Spaces:
Runtime error
Runtime error
""" | |
This script demonstrates how to extract a LoRA checkpoint from a fully finetuned model with the CogVideoX model. | |
To make it work for other models: | |
* Change the model class. Here we use `CogVideoXTransformer3DModel`. For Flux, it would be `FluxTransformer2DModel`, | |
for example. (TODO: more reason to add `AutoModel`). | |
* Spply path to the base checkpoint via `base_ckpt_path`. | |
* Supply path to the fully fine-tuned checkpoint via `--finetune_ckpt_path`. | |
* Change the `--rank` as needed. | |
Example usage: | |
```bash | |
python extract_lora_from_model.py \ | |
--base_ckpt_path=THUDM/CogVideoX-5b \ | |
--finetune_ckpt_path=finetrainers/cakeify-v0 \ | |
--lora_out_path=cakeify_lora.safetensors | |
``` | |
Script is adapted from | |
https://github.com/Stability-AI/stability-ComfyUI-nodes/blob/001154622564b17223ce0191803c5fff7b87146c/control_lora_create.py | |
""" | |
import argparse | |
import torch | |
from safetensors.torch import save_file | |
from tqdm.auto import tqdm | |
from diffusers import CogVideoXTransformer3DModel | |
RANK = 64 | |
CLAMP_QUANTILE = 0.99 | |
# Comes from | |
# https://github.com/Stability-AI/stability-ComfyUI-nodes/blob/001154622564b17223ce0191803c5fff7b87146c/control_lora_create.py#L9 | |
def extract_lora(diff, rank): | |
# Important to use CUDA otherwise, very slow! | |
if torch.cuda.is_available(): | |
diff = diff.to("cuda") | |
is_conv2d = len(diff.shape) == 4 | |
kernel_size = None if not is_conv2d else diff.size()[2:4] | |
is_conv2d_3x3 = is_conv2d and kernel_size != (1, 1) | |
out_dim, in_dim = diff.size()[0:2] | |
rank = min(rank, in_dim, out_dim) | |
if is_conv2d: | |
if is_conv2d_3x3: | |
diff = diff.flatten(start_dim=1) | |
else: | |
diff = diff.squeeze() | |
U, S, Vh = torch.linalg.svd(diff.float()) | |
U = U[:, :rank] | |
S = S[:rank] | |
U = U @ torch.diag(S) | |
Vh = Vh[:rank, :] | |
dist = torch.cat([U.flatten(), Vh.flatten()]) | |
hi_val = torch.quantile(dist, CLAMP_QUANTILE) | |
low_val = -hi_val | |
U = U.clamp(low_val, hi_val) | |
Vh = Vh.clamp(low_val, hi_val) | |
if is_conv2d: | |
U = U.reshape(out_dim, rank, 1, 1) | |
Vh = Vh.reshape(rank, in_dim, kernel_size[0], kernel_size[1]) | |
return (U.cpu(), Vh.cpu()) | |
def parse_args(): | |
parser = argparse.ArgumentParser() | |
parser.add_argument( | |
"--base_ckpt_path", | |
default=None, | |
type=str, | |
required=True, | |
help="Base checkpoint path from which the model was finetuned. Can be a model ID on the Hub.", | |
) | |
parser.add_argument( | |
"--base_subfolder", | |
default="transformer", | |
type=str, | |
help="subfolder to load the base checkpoint from if any.", | |
) | |
parser.add_argument( | |
"--finetune_ckpt_path", | |
default=None, | |
type=str, | |
required=True, | |
help="Fully fine-tuned checkpoint path. Can be a model ID on the Hub.", | |
) | |
parser.add_argument( | |
"--finetune_subfolder", | |
default=None, | |
type=str, | |
help="subfolder to load the fulle finetuned checkpoint from if any.", | |
) | |
parser.add_argument("--rank", default=64, type=int) | |
parser.add_argument("--lora_out_path", default=None, type=str, required=True) | |
args = parser.parse_args() | |
if not args.lora_out_path.endswith(".safetensors"): | |
raise ValueError("`lora_out_path` must end with `.safetensors`.") | |
return args | |
def main(args): | |
model_finetuned = CogVideoXTransformer3DModel.from_pretrained( | |
args.finetune_ckpt_path, subfolder=args.finetune_subfolder, torch_dtype=torch.bfloat16 | |
) | |
state_dict_ft = model_finetuned.state_dict() | |
# Change the `subfolder` as needed. | |
base_model = CogVideoXTransformer3DModel.from_pretrained( | |
args.base_ckpt_path, subfolder=args.base_subfolder, torch_dtype=torch.bfloat16 | |
) | |
state_dict = base_model.state_dict() | |
output_dict = {} | |
for k in tqdm(state_dict, desc="Extracting LoRA..."): | |
original_param = state_dict[k] | |
finetuned_param = state_dict_ft[k] | |
if len(original_param.shape) >= 2: | |
diff = finetuned_param.float() - original_param.float() | |
out = extract_lora(diff, RANK) | |
name = k | |
if name.endswith(".weight"): | |
name = name[: -len(".weight")] | |
down_key = "{}.lora_A.weight".format(name) | |
up_key = "{}.lora_B.weight".format(name) | |
output_dict[up_key] = out[0].contiguous().to(finetuned_param.dtype) | |
output_dict[down_key] = out[1].contiguous().to(finetuned_param.dtype) | |
prefix = "transformer" if "transformer" in base_model.__class__.__name__.lower() else "unet" | |
output_dict = {f"{prefix}.{k}": v for k, v in output_dict.items()} | |
save_file(output_dict, args.lora_out_path) | |
print(f"LoRA saved and it contains {len(output_dict)} keys.") | |
if __name__ == "__main__": | |
args = parse_args() | |
main(args) | |