Spaces:
Runtime error
Runtime error
# Based on stable_diffusion_reference.py | |
import inspect | |
from typing import Any, Callable, Dict, List, Optional, Tuple, Union | |
import numpy as np | |
import PIL.Image | |
import torch | |
from diffusers import StableDiffusionXLPipeline | |
from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback | |
from diffusers.image_processor import PipelineImageInput | |
from diffusers.models.attention import BasicTransformerBlock | |
from diffusers.models.unets.unet_2d_blocks import CrossAttnDownBlock2D, CrossAttnUpBlock2D, DownBlock2D, UpBlock2D | |
from diffusers.pipelines.stable_diffusion_xl.pipeline_output import StableDiffusionXLPipelineOutput | |
from diffusers.utils import PIL_INTERPOLATION, deprecate, is_torch_xla_available, logging, replace_example_docstring | |
from diffusers.utils.torch_utils import randn_tensor | |
if is_torch_xla_available(): | |
import torch_xla.core.xla_model as xm # type: ignore | |
XLA_AVAILABLE = True | |
else: | |
XLA_AVAILABLE = False | |
logger = logging.get_logger(__name__) # pylint: disable=invalid-name | |
EXAMPLE_DOC_STRING = """ | |
Examples: | |
```py | |
>>> import torch | |
>>> from diffusers.schedulers import UniPCMultistepScheduler | |
>>> from diffusers.utils import load_image | |
>>> input_image = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/sdxl_reference_input_cat.jpg") | |
>>> pipe = StableDiffusionXLReferencePipeline.from_pretrained( | |
"stabilityai/stable-diffusion-xl-base-1.0", | |
torch_dtype=torch.float16, | |
use_safetensors=True, | |
variant="fp16").to('cuda:0') | |
>>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config) | |
>>> result_img = pipe(ref_image=input_image, | |
prompt="a dog", | |
num_inference_steps=20, | |
reference_attn=True, | |
reference_adain=True).images[0] | |
>>> result_img.show() | |
``` | |
""" | |
def torch_dfs(model: torch.nn.Module): | |
result = [model] | |
for child in model.children(): | |
result += torch_dfs(child) | |
return result | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.rescale_noise_cfg | |
def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0): | |
""" | |
Rescale `noise_cfg` according to `guidance_rescale`. Based on findings of [Common Diffusion Noise Schedules and | |
Sample Steps are Flawed](https://huggingface.co/papers/2305.08891). See Section 3.4 | |
""" | |
std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True) | |
std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True) | |
# rescale the results from guidance (fixes overexposure) | |
noise_pred_rescaled = noise_cfg * (std_text / std_cfg) | |
# mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images | |
noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg | |
return noise_cfg | |
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion.retrieve_timesteps | |
def retrieve_timesteps( | |
scheduler, | |
num_inference_steps: Optional[int] = None, | |
device: Optional[Union[str, torch.device]] = None, | |
timesteps: Optional[List[int]] = None, | |
sigmas: Optional[List[float]] = None, | |
**kwargs, | |
): | |
r""" | |
Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles | |
custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`. | |
Args: | |
scheduler (`SchedulerMixin`): | |
The scheduler to get timesteps from. | |
num_inference_steps (`int`): | |
The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps` | |
must be `None`. | |
device (`str` or `torch.device`, *optional*): | |
The device to which the timesteps should be moved to. If `None`, the timesteps are not moved. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed, | |
`num_inference_steps` and `sigmas` must be `None`. | |
sigmas (`List[float]`, *optional*): | |
Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed, | |
`num_inference_steps` and `timesteps` must be `None`. | |
Returns: | |
`Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the | |
second element is the number of inference steps. | |
""" | |
if timesteps is not None and sigmas is not None: | |
raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values") | |
if timesteps is not None: | |
accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
if not accepts_timesteps: | |
raise ValueError( | |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
f" timestep schedules. Please check whether you are using the correct scheduler." | |
) | |
scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
num_inference_steps = len(timesteps) | |
elif sigmas is not None: | |
accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys()) | |
if not accept_sigmas: | |
raise ValueError( | |
f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom" | |
f" sigmas schedules. Please check whether you are using the correct scheduler." | |
) | |
scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
num_inference_steps = len(timesteps) | |
else: | |
scheduler.set_timesteps(num_inference_steps, device=device, **kwargs) | |
timesteps = scheduler.timesteps | |
return timesteps, num_inference_steps | |
class StableDiffusionXLReferencePipeline(StableDiffusionXLPipeline): | |
def prepare_ref_latents(self, refimage, batch_size, dtype, device, generator, do_classifier_free_guidance): | |
refimage = refimage.to(device=device) | |
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast | |
if needs_upcasting: | |
self.upcast_vae() | |
refimage = refimage.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) | |
if refimage.dtype != self.vae.dtype: | |
refimage = refimage.to(dtype=self.vae.dtype) | |
# encode the mask image into latents space so we can concatenate it to the latents | |
if isinstance(generator, list): | |
ref_image_latents = [ | |
self.vae.encode(refimage[i : i + 1]).latent_dist.sample(generator=generator[i]) | |
for i in range(batch_size) | |
] | |
ref_image_latents = torch.cat(ref_image_latents, dim=0) | |
else: | |
ref_image_latents = self.vae.encode(refimage).latent_dist.sample(generator=generator) | |
ref_image_latents = self.vae.config.scaling_factor * ref_image_latents | |
# duplicate mask and ref_image_latents for each generation per prompt, using mps friendly method | |
if ref_image_latents.shape[0] < batch_size: | |
if not batch_size % ref_image_latents.shape[0] == 0: | |
raise ValueError( | |
"The passed images and the required batch size don't match. Images are supposed to be duplicated" | |
f" to a total batch size of {batch_size}, but {ref_image_latents.shape[0]} images were passed." | |
" Make sure the number of images that you pass is divisible by the total requested batch size." | |
) | |
ref_image_latents = ref_image_latents.repeat(batch_size // ref_image_latents.shape[0], 1, 1, 1) | |
ref_image_latents = torch.cat([ref_image_latents] * 2) if do_classifier_free_guidance else ref_image_latents | |
# aligning device to prevent device errors when concating it with the latent model input | |
ref_image_latents = ref_image_latents.to(device=device, dtype=dtype) | |
# cast back to fp16 if needed | |
if needs_upcasting: | |
self.vae.to(dtype=torch.float16) | |
return ref_image_latents | |
def prepare_ref_image( | |
self, | |
image, | |
width, | |
height, | |
batch_size, | |
num_images_per_prompt, | |
device, | |
dtype, | |
do_classifier_free_guidance=False, | |
guess_mode=False, | |
): | |
if not isinstance(image, torch.Tensor): | |
if isinstance(image, PIL.Image.Image): | |
image = [image] | |
if isinstance(image[0], PIL.Image.Image): | |
images = [] | |
for image_ in image: | |
image_ = image_.convert("RGB") | |
image_ = image_.resize((width, height), resample=PIL_INTERPOLATION["lanczos"]) | |
image_ = np.array(image_) | |
image_ = image_[None, :] | |
images.append(image_) | |
image = images | |
image = np.concatenate(image, axis=0) | |
image = np.array(image).astype(np.float32) / 255.0 | |
image = (image - 0.5) / 0.5 | |
image = image.transpose(0, 3, 1, 2) | |
image = torch.from_numpy(image) | |
elif isinstance(image[0], torch.Tensor): | |
image = torch.stack(image, dim=0) | |
image_batch_size = image.shape[0] | |
if image_batch_size == 1: | |
repeat_by = batch_size | |
else: | |
repeat_by = num_images_per_prompt | |
image = image.repeat_interleave(repeat_by, dim=0) | |
image = image.to(device=device, dtype=dtype) | |
if do_classifier_free_guidance and not guess_mode: | |
image = torch.cat([image] * 2) | |
return image | |
def check_ref_inputs( | |
self, | |
ref_image, | |
reference_guidance_start, | |
reference_guidance_end, | |
style_fidelity, | |
reference_attn, | |
reference_adain, | |
): | |
ref_image_is_pil = isinstance(ref_image, PIL.Image.Image) | |
ref_image_is_tensor = isinstance(ref_image, torch.Tensor) | |
if not ref_image_is_pil and not ref_image_is_tensor: | |
raise TypeError( | |
f"ref image must be passed and be one of PIL image or torch tensor, but is {type(ref_image)}" | |
) | |
if not reference_attn and not reference_adain: | |
raise ValueError("`reference_attn` or `reference_adain` must be True.") | |
if style_fidelity < 0.0: | |
raise ValueError(f"style fidelity: {style_fidelity} can't be smaller than 0.") | |
if style_fidelity > 1.0: | |
raise ValueError(f"style fidelity: {style_fidelity} can't be larger than 1.0.") | |
if reference_guidance_start >= reference_guidance_end: | |
raise ValueError( | |
f"reference guidance start: {reference_guidance_start} cannot be larger or equal to reference guidance end: {reference_guidance_end}." | |
) | |
if reference_guidance_start < 0.0: | |
raise ValueError(f"reference guidance start: {reference_guidance_start} can't be smaller than 0.") | |
if reference_guidance_end > 1.0: | |
raise ValueError(f"reference guidance end: {reference_guidance_end} can't be larger than 1.0.") | |
def __call__( | |
self, | |
prompt: Union[str, List[str]] = None, | |
prompt_2: Optional[Union[str, List[str]]] = None, | |
ref_image: Union[torch.Tensor, PIL.Image.Image] = None, | |
height: Optional[int] = None, | |
width: Optional[int] = None, | |
num_inference_steps: int = 50, | |
timesteps: List[int] = None, | |
sigmas: List[float] = None, | |
denoising_end: Optional[float] = None, | |
guidance_scale: float = 5.0, | |
negative_prompt: Optional[Union[str, List[str]]] = None, | |
negative_prompt_2: Optional[Union[str, List[str]]] = None, | |
num_images_per_prompt: Optional[int] = 1, | |
eta: float = 0.0, | |
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None, | |
latents: Optional[torch.Tensor] = None, | |
prompt_embeds: Optional[torch.Tensor] = None, | |
negative_prompt_embeds: Optional[torch.Tensor] = None, | |
pooled_prompt_embeds: Optional[torch.Tensor] = None, | |
negative_pooled_prompt_embeds: Optional[torch.Tensor] = None, | |
ip_adapter_image: Optional[PipelineImageInput] = None, | |
ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None, | |
output_type: Optional[str] = "pil", | |
return_dict: bool = True, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
guidance_rescale: float = 0.0, | |
original_size: Optional[Tuple[int, int]] = None, | |
crops_coords_top_left: Tuple[int, int] = (0, 0), | |
target_size: Optional[Tuple[int, int]] = None, | |
negative_original_size: Optional[Tuple[int, int]] = None, | |
negative_crops_coords_top_left: Tuple[int, int] = (0, 0), | |
negative_target_size: Optional[Tuple[int, int]] = None, | |
clip_skip: Optional[int] = None, | |
callback_on_step_end: Optional[ | |
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks] | |
] = None, | |
callback_on_step_end_tensor_inputs: List[str] = ["latents"], | |
attention_auto_machine_weight: float = 1.0, | |
gn_auto_machine_weight: float = 1.0, | |
reference_guidance_start: float = 0.0, | |
reference_guidance_end: float = 1.0, | |
style_fidelity: float = 0.5, | |
reference_attn: bool = True, | |
reference_adain: bool = True, | |
**kwargs, | |
): | |
r""" | |
Function invoked when calling the pipeline for generation. | |
Args: | |
prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`. | |
instead. | |
prompt_2 (`str` or `List[str]`, *optional*): | |
The prompt or prompts to be sent to the `tokenizer_2` and `text_encoder_2`. If not defined, `prompt` is | |
used in both text-encoders | |
ref_image (`torch.Tensor`, `PIL.Image.Image`): | |
The Reference Control input condition. Reference Control uses this input condition to generate guidance to Unet. If | |
the type is specified as `Torch.Tensor`, it is passed to Reference Control as is. `PIL.Image.Image` can | |
also be accepted as an image. | |
height (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The height in pixels of the generated image. This is set to 1024 by default for the best results. | |
Anything below 512 pixels won't work well for | |
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) | |
and checkpoints that are not specifically fine-tuned on low resolutions. | |
width (`int`, *optional*, defaults to self.unet.config.sample_size * self.vae_scale_factor): | |
The width in pixels of the generated image. This is set to 1024 by default for the best results. | |
Anything below 512 pixels won't work well for | |
[stabilityai/stable-diffusion-xl-base-1.0](https://huggingface.co/stabilityai/stable-diffusion-xl-base-1.0) | |
and checkpoints that are not specifically fine-tuned on low resolutions. | |
num_inference_steps (`int`, *optional*, defaults to 50): | |
The number of denoising steps. More denoising steps usually lead to a higher quality image at the | |
expense of slower inference. | |
timesteps (`List[int]`, *optional*): | |
Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument | |
in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is | |
passed will be used. Must be in descending order. | |
sigmas (`List[float]`, *optional*): | |
Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in | |
their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed | |
will be used. | |
denoising_end (`float`, *optional*): | |
When specified, determines the fraction (between 0.0 and 1.0) of the total denoising process to be | |
completed before it is intentionally prematurely terminated. As a result, the returned sample will | |
still retain a substantial amount of noise as determined by the discrete timesteps selected by the | |
scheduler. The denoising_end parameter should ideally be utilized when this pipeline forms a part of a | |
"Mixture of Denoisers" multi-pipeline setup, as elaborated in [**Refining the Image | |
Output**](https://huggingface.co/docs/diffusers/api/pipelines/stable_diffusion/stable_diffusion_xl#refining-the-image-output) | |
guidance_scale (`float`, *optional*, defaults to 5.0): | |
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://huggingface.co/papers/2207.12598). | |
`guidance_scale` is defined as `w` of equation 2. of [Imagen | |
Paper](https://huggingface.co/papers/2205.11487). Guidance scale is enabled by setting `guidance_scale > | |
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`, | |
usually at the expense of lower image quality. | |
negative_prompt (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation. If not defined, one has to pass | |
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is | |
less than `1`). | |
negative_prompt_2 (`str` or `List[str]`, *optional*): | |
The prompt or prompts not to guide the image generation to be sent to `tokenizer_2` and | |
`text_encoder_2`. If not defined, `negative_prompt` is used in both text-encoders | |
num_images_per_prompt (`int`, *optional*, defaults to 1): | |
The number of images to generate per prompt. | |
eta (`float`, *optional*, defaults to 0.0): | |
Corresponds to parameter eta (η) in the DDIM paper: https://huggingface.co/papers/2010.02502. Only applies to | |
[`schedulers.DDIMScheduler`], will be ignored for others. | |
generator (`torch.Generator` or `List[torch.Generator]`, *optional*): | |
One or a list of [torch generator(s)](https://pytorch.org/docs/stable/generated/torch.Generator.html) | |
to make generation deterministic. | |
latents (`torch.Tensor`, *optional*): | |
Pre-generated noisy latents, sampled from a Gaussian distribution, to be used as inputs for image | |
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents | |
tensor will ge generated by sampling using the supplied random `generator`. | |
prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not | |
provided, text embeddings will be generated from `prompt` input argument. | |
negative_prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input | |
argument. | |
pooled_prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. | |
If not provided, pooled text embeddings will be generated from `prompt` input argument. | |
negative_pooled_prompt_embeds (`torch.Tensor`, *optional*): | |
Pre-generated negative pooled text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt | |
weighting. If not provided, pooled negative_prompt_embeds will be generated from `negative_prompt` | |
input argument. | |
ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters. | |
ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*): | |
Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of | |
IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should | |
contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not | |
provided, embeddings are computed from the `ip_adapter_image` input argument. | |
output_type (`str`, *optional*, defaults to `"pil"`): | |
The output format of the generate image. Choose between | |
[PIL](https://pillow.readthedocs.io/en/stable/): `PIL.Image.Image` or `np.array`. | |
return_dict (`bool`, *optional*, defaults to `True`): | |
Whether or not to return a [`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] instead | |
of a plain tuple. | |
cross_attention_kwargs (`dict`, *optional*): | |
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under | |
`self.processor` in | |
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py). | |
guidance_rescale (`float`, *optional*, defaults to 0.0): | |
Guidance rescale factor proposed by [Common Diffusion Noise Schedules and Sample Steps are | |
Flawed](https://huggingface.co/papers/2305.08891) `guidance_scale` is defined as `φ` in equation 16. of | |
[Common Diffusion Noise Schedules and Sample Steps are Flawed](https://huggingface.co/papers/2305.08891). | |
Guidance rescale factor should fix overexposure when using zero terminal SNR. | |
original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | |
If `original_size` is not the same as `target_size` the image will appear to be down- or upsampled. | |
`original_size` defaults to `(height, width)` if not specified. Part of SDXL's micro-conditioning as | |
explained in section 2.2 of | |
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | |
crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): | |
`crops_coords_top_left` can be used to generate an image that appears to be "cropped" from the position | |
`crops_coords_top_left` downwards. Favorable, well-centered images are usually achieved by setting | |
`crops_coords_top_left` to (0, 0). Part of SDXL's micro-conditioning as explained in section 2.2 of | |
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | |
target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | |
For most cases, `target_size` should be set to the desired height and width of the generated image. If | |
not specified it will default to `(height, width)`. Part of SDXL's micro-conditioning as explained in | |
section 2.2 of [https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). | |
negative_original_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | |
To negatively condition the generation process based on a specific image resolution. Part of SDXL's | |
micro-conditioning as explained in section 2.2 of | |
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more | |
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. | |
negative_crops_coords_top_left (`Tuple[int]`, *optional*, defaults to (0, 0)): | |
To negatively condition the generation process based on a specific crop coordinates. Part of SDXL's | |
micro-conditioning as explained in section 2.2 of | |
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more | |
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. | |
negative_target_size (`Tuple[int]`, *optional*, defaults to (1024, 1024)): | |
To negatively condition the generation process based on a target image resolution. It should be as same | |
as the `target_size` for most cases. Part of SDXL's micro-conditioning as explained in section 2.2 of | |
[https://huggingface.co/papers/2307.01952](https://huggingface.co/papers/2307.01952). For more | |
information, refer to this issue thread: https://github.com/huggingface/diffusers/issues/4208. | |
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*): | |
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of | |
each denoising step during the inference. with the following arguments: `callback_on_step_end(self: | |
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a | |
list of all tensors as specified by `callback_on_step_end_tensor_inputs`. | |
callback_on_step_end_tensor_inputs (`List`, *optional*): | |
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list | |
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the | |
`._callback_tensor_inputs` attribute of your pipeline class. | |
attention_auto_machine_weight (`float`): | |
Weight of using reference query for self attention's context. | |
If attention_auto_machine_weight=1.0, use reference query for all self attention's context. | |
gn_auto_machine_weight (`float`): | |
Weight of using reference adain. If gn_auto_machine_weight=2.0, use all reference adain plugins. | |
reference_guidance_start (`float`, *optional*, defaults to 0.0): | |
The percentage of total steps at which the reference ControlNet starts applying. | |
reference_guidance_end (`float`, *optional*, defaults to 1.0): | |
The percentage of total steps at which the reference ControlNet stops applying. | |
style_fidelity (`float`): | |
style fidelity of ref_uncond_xt. If style_fidelity=1.0, control more important, | |
elif style_fidelity=0.0, prompt more important, else balanced. | |
reference_attn (`bool`): | |
Whether to use reference query for self attention's context. | |
reference_adain (`bool`): | |
Whether to use reference adain. | |
Examples: | |
Returns: | |
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] or `tuple`: | |
[`~pipelines.stable_diffusion_xl.StableDiffusionXLPipelineOutput`] if `return_dict` is True, otherwise a | |
`tuple`. When returning a tuple, the first element is a list with the generated images. | |
""" | |
callback = kwargs.pop("callback", None) | |
callback_steps = kwargs.pop("callback_steps", None) | |
if callback is not None: | |
deprecate( | |
"callback", | |
"1.0.0", | |
"Passing `callback` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", | |
) | |
if callback_steps is not None: | |
deprecate( | |
"callback_steps", | |
"1.0.0", | |
"Passing `callback_steps` as an input argument to `__call__` is deprecated, consider use `callback_on_step_end`", | |
) | |
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)): | |
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs | |
# 0. Default height and width to unet | |
height = height or self.default_sample_size * self.vae_scale_factor | |
width = width or self.default_sample_size * self.vae_scale_factor | |
original_size = original_size or (height, width) | |
target_size = target_size or (height, width) | |
# 1. Check inputs. Raise error if not correct | |
self.check_inputs( | |
prompt, | |
prompt_2, | |
height, | |
width, | |
callback_steps, | |
negative_prompt, | |
negative_prompt_2, | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
ip_adapter_image, | |
ip_adapter_image_embeds, | |
callback_on_step_end_tensor_inputs, | |
) | |
self.check_ref_inputs( | |
ref_image, | |
reference_guidance_start, | |
reference_guidance_end, | |
style_fidelity, | |
reference_attn, | |
reference_adain, | |
) | |
self._guidance_scale = guidance_scale | |
self._guidance_rescale = guidance_rescale | |
self._clip_skip = clip_skip | |
self._cross_attention_kwargs = cross_attention_kwargs | |
self._denoising_end = denoising_end | |
self._interrupt = False | |
# 2. Define call parameters | |
if prompt is not None and isinstance(prompt, str): | |
batch_size = 1 | |
elif prompt is not None and isinstance(prompt, list): | |
batch_size = len(prompt) | |
else: | |
batch_size = prompt_embeds.shape[0] | |
device = self._execution_device | |
# 3. Encode input prompt | |
lora_scale = ( | |
self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None | |
) | |
( | |
prompt_embeds, | |
negative_prompt_embeds, | |
pooled_prompt_embeds, | |
negative_pooled_prompt_embeds, | |
) = self.encode_prompt( | |
prompt=prompt, | |
prompt_2=prompt_2, | |
device=device, | |
num_images_per_prompt=num_images_per_prompt, | |
do_classifier_free_guidance=self.do_classifier_free_guidance, | |
negative_prompt=negative_prompt, | |
negative_prompt_2=negative_prompt_2, | |
prompt_embeds=prompt_embeds, | |
negative_prompt_embeds=negative_prompt_embeds, | |
pooled_prompt_embeds=pooled_prompt_embeds, | |
negative_pooled_prompt_embeds=negative_pooled_prompt_embeds, | |
lora_scale=lora_scale, | |
clip_skip=self.clip_skip, | |
) | |
# 4. Preprocess reference image | |
ref_image = self.prepare_ref_image( | |
image=ref_image, | |
width=width, | |
height=height, | |
batch_size=batch_size * num_images_per_prompt, | |
num_images_per_prompt=num_images_per_prompt, | |
device=device, | |
dtype=prompt_embeds.dtype, | |
) | |
# 5. Prepare timesteps | |
timesteps, num_inference_steps = retrieve_timesteps( | |
self.scheduler, num_inference_steps, device, timesteps, sigmas | |
) | |
# 6. Prepare latent variables | |
num_channels_latents = self.unet.config.in_channels | |
latents = self.prepare_latents( | |
batch_size * num_images_per_prompt, | |
num_channels_latents, | |
height, | |
width, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
latents, | |
) | |
# 7. Prepare reference latent variables | |
ref_image_latents = self.prepare_ref_latents( | |
ref_image, | |
batch_size * num_images_per_prompt, | |
prompt_embeds.dtype, | |
device, | |
generator, | |
self.do_classifier_free_guidance, | |
) | |
# 8. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline | |
extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta) | |
# 8.1 Create tensor stating which reference controlnets to keep | |
reference_keeps = [] | |
for i in range(len(timesteps)): | |
reference_keep = 1.0 - float( | |
i / len(timesteps) < reference_guidance_start or (i + 1) / len(timesteps) > reference_guidance_end | |
) | |
reference_keeps.append(reference_keep) | |
# 8.2 Modify self attention and group norm | |
MODE = "write" | |
uc_mask = ( | |
torch.Tensor([1] * batch_size * num_images_per_prompt + [0] * batch_size * num_images_per_prompt) | |
.type_as(ref_image_latents) | |
.bool() | |
) | |
do_classifier_free_guidance = self.do_classifier_free_guidance | |
def hacked_basic_transformer_inner_forward( | |
self, | |
hidden_states: torch.Tensor, | |
attention_mask: Optional[torch.Tensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
timestep: Optional[torch.LongTensor] = None, | |
cross_attention_kwargs: Dict[str, Any] = None, | |
class_labels: Optional[torch.LongTensor] = None, | |
): | |
if self.use_ada_layer_norm: | |
norm_hidden_states = self.norm1(hidden_states, timestep) | |
elif self.use_ada_layer_norm_zero: | |
norm_hidden_states, gate_msa, shift_mlp, scale_mlp, gate_mlp = self.norm1( | |
hidden_states, timestep, class_labels, hidden_dtype=hidden_states.dtype | |
) | |
else: | |
norm_hidden_states = self.norm1(hidden_states) | |
# 1. Self-Attention | |
cross_attention_kwargs = cross_attention_kwargs if cross_attention_kwargs is not None else {} | |
if self.only_cross_attention: | |
attn_output = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
else: | |
if MODE == "write": | |
self.bank.append(norm_hidden_states.detach().clone()) | |
attn_output = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
if MODE == "read": | |
if attention_auto_machine_weight > self.attn_weight: | |
attn_output_uc = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=torch.cat([norm_hidden_states] + self.bank, dim=1), | |
# attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
attn_output_c = attn_output_uc.clone() | |
if do_classifier_free_guidance and style_fidelity > 0: | |
attn_output_c[uc_mask] = self.attn1( | |
norm_hidden_states[uc_mask], | |
encoder_hidden_states=norm_hidden_states[uc_mask], | |
**cross_attention_kwargs, | |
) | |
attn_output = style_fidelity * attn_output_c + (1.0 - style_fidelity) * attn_output_uc | |
self.bank.clear() | |
else: | |
attn_output = self.attn1( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states if self.only_cross_attention else None, | |
attention_mask=attention_mask, | |
**cross_attention_kwargs, | |
) | |
if self.use_ada_layer_norm_zero: | |
attn_output = gate_msa.unsqueeze(1) * attn_output | |
hidden_states = attn_output + hidden_states | |
if self.attn2 is not None: | |
norm_hidden_states = ( | |
self.norm2(hidden_states, timestep) if self.use_ada_layer_norm else self.norm2(hidden_states) | |
) | |
# 2. Cross-Attention | |
attn_output = self.attn2( | |
norm_hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
attention_mask=encoder_attention_mask, | |
**cross_attention_kwargs, | |
) | |
hidden_states = attn_output + hidden_states | |
# 3. Feed-forward | |
norm_hidden_states = self.norm3(hidden_states) | |
if self.use_ada_layer_norm_zero: | |
norm_hidden_states = norm_hidden_states * (1 + scale_mlp[:, None]) + shift_mlp[:, None] | |
ff_output = self.ff(norm_hidden_states) | |
if self.use_ada_layer_norm_zero: | |
ff_output = gate_mlp.unsqueeze(1) * ff_output | |
hidden_states = ff_output + hidden_states | |
return hidden_states | |
def hacked_mid_forward(self, *args, **kwargs): | |
eps = 1e-6 | |
x = self.original_forward(*args, **kwargs) | |
if MODE == "write": | |
if gn_auto_machine_weight >= self.gn_weight: | |
var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0) | |
self.mean_bank.append(mean) | |
self.var_bank.append(var) | |
if MODE == "read": | |
if len(self.mean_bank) > 0 and len(self.var_bank) > 0: | |
var, mean = torch.var_mean(x, dim=(2, 3), keepdim=True, correction=0) | |
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 | |
mean_acc = sum(self.mean_bank) / float(len(self.mean_bank)) | |
var_acc = sum(self.var_bank) / float(len(self.var_bank)) | |
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 | |
x_uc = (((x - mean) / std) * std_acc) + mean_acc | |
x_c = x_uc.clone() | |
if do_classifier_free_guidance and style_fidelity > 0: | |
x_c[uc_mask] = x[uc_mask] | |
x = style_fidelity * x_c + (1.0 - style_fidelity) * x_uc | |
self.mean_bank = [] | |
self.var_bank = [] | |
return x | |
def hack_CrossAttnDownBlock2D_forward( | |
self, | |
hidden_states: torch.Tensor, | |
temb: Optional[torch.Tensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
): | |
eps = 1e-6 | |
# TODO(Patrick, William) - attention mask is not used | |
output_states = () | |
for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)): | |
hidden_states = resnet(hidden_states, temb) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
return_dict=False, | |
)[0] | |
if MODE == "write": | |
if gn_auto_machine_weight >= self.gn_weight: | |
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) | |
self.mean_bank.append([mean]) | |
self.var_bank.append([var]) | |
if MODE == "read": | |
if len(self.mean_bank) > 0 and len(self.var_bank) > 0: | |
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) | |
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 | |
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i])) | |
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i])) | |
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 | |
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc | |
hidden_states_c = hidden_states_uc.clone() | |
if do_classifier_free_guidance and style_fidelity > 0: | |
hidden_states_c[uc_mask] = hidden_states[uc_mask] | |
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc | |
output_states = output_states + (hidden_states,) | |
if MODE == "read": | |
self.mean_bank = [] | |
self.var_bank = [] | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states) | |
output_states = output_states + (hidden_states,) | |
return hidden_states, output_states | |
def hacked_DownBlock2D_forward(self, hidden_states, temb=None, *args, **kwargs): | |
eps = 1e-6 | |
output_states = () | |
for i, resnet in enumerate(self.resnets): | |
hidden_states = resnet(hidden_states, temb) | |
if MODE == "write": | |
if gn_auto_machine_weight >= self.gn_weight: | |
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) | |
self.mean_bank.append([mean]) | |
self.var_bank.append([var]) | |
if MODE == "read": | |
if len(self.mean_bank) > 0 and len(self.var_bank) > 0: | |
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) | |
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 | |
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i])) | |
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i])) | |
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 | |
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc | |
hidden_states_c = hidden_states_uc.clone() | |
if do_classifier_free_guidance and style_fidelity > 0: | |
hidden_states_c[uc_mask] = hidden_states[uc_mask] | |
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc | |
output_states = output_states + (hidden_states,) | |
if MODE == "read": | |
self.mean_bank = [] | |
self.var_bank = [] | |
if self.downsamplers is not None: | |
for downsampler in self.downsamplers: | |
hidden_states = downsampler(hidden_states) | |
output_states = output_states + (hidden_states,) | |
return hidden_states, output_states | |
def hacked_CrossAttnUpBlock2D_forward( | |
self, | |
hidden_states: torch.Tensor, | |
res_hidden_states_tuple: Tuple[torch.Tensor, ...], | |
temb: Optional[torch.Tensor] = None, | |
encoder_hidden_states: Optional[torch.Tensor] = None, | |
cross_attention_kwargs: Optional[Dict[str, Any]] = None, | |
upsample_size: Optional[int] = None, | |
attention_mask: Optional[torch.Tensor] = None, | |
encoder_attention_mask: Optional[torch.Tensor] = None, | |
): | |
eps = 1e-6 | |
# TODO(Patrick, William) - attention mask is not used | |
for i, (resnet, attn) in enumerate(zip(self.resnets, self.attentions)): | |
# pop res hidden states | |
res_hidden_states = res_hidden_states_tuple[-1] | |
res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
hidden_states = resnet(hidden_states, temb) | |
hidden_states = attn( | |
hidden_states, | |
encoder_hidden_states=encoder_hidden_states, | |
cross_attention_kwargs=cross_attention_kwargs, | |
attention_mask=attention_mask, | |
encoder_attention_mask=encoder_attention_mask, | |
return_dict=False, | |
)[0] | |
if MODE == "write": | |
if gn_auto_machine_weight >= self.gn_weight: | |
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) | |
self.mean_bank.append([mean]) | |
self.var_bank.append([var]) | |
if MODE == "read": | |
if len(self.mean_bank) > 0 and len(self.var_bank) > 0: | |
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) | |
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 | |
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i])) | |
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i])) | |
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 | |
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc | |
hidden_states_c = hidden_states_uc.clone() | |
if do_classifier_free_guidance and style_fidelity > 0: | |
hidden_states_c[uc_mask] = hidden_states[uc_mask] | |
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc | |
if MODE == "read": | |
self.mean_bank = [] | |
self.var_bank = [] | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states, upsample_size) | |
return hidden_states | |
def hacked_UpBlock2D_forward( | |
self, hidden_states, res_hidden_states_tuple, temb=None, upsample_size=None, *args, **kwargs | |
): | |
eps = 1e-6 | |
for i, resnet in enumerate(self.resnets): | |
# pop res hidden states | |
res_hidden_states = res_hidden_states_tuple[-1] | |
res_hidden_states_tuple = res_hidden_states_tuple[:-1] | |
hidden_states = torch.cat([hidden_states, res_hidden_states], dim=1) | |
hidden_states = resnet(hidden_states, temb) | |
if MODE == "write": | |
if gn_auto_machine_weight >= self.gn_weight: | |
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) | |
self.mean_bank.append([mean]) | |
self.var_bank.append([var]) | |
if MODE == "read": | |
if len(self.mean_bank) > 0 and len(self.var_bank) > 0: | |
var, mean = torch.var_mean(hidden_states, dim=(2, 3), keepdim=True, correction=0) | |
std = torch.maximum(var, torch.zeros_like(var) + eps) ** 0.5 | |
mean_acc = sum(self.mean_bank[i]) / float(len(self.mean_bank[i])) | |
var_acc = sum(self.var_bank[i]) / float(len(self.var_bank[i])) | |
std_acc = torch.maximum(var_acc, torch.zeros_like(var_acc) + eps) ** 0.5 | |
hidden_states_uc = (((hidden_states - mean) / std) * std_acc) + mean_acc | |
hidden_states_c = hidden_states_uc.clone() | |
if do_classifier_free_guidance and style_fidelity > 0: | |
hidden_states_c[uc_mask] = hidden_states[uc_mask] | |
hidden_states = style_fidelity * hidden_states_c + (1.0 - style_fidelity) * hidden_states_uc | |
if MODE == "read": | |
self.mean_bank = [] | |
self.var_bank = [] | |
if self.upsamplers is not None: | |
for upsampler in self.upsamplers: | |
hidden_states = upsampler(hidden_states, upsample_size) | |
return hidden_states | |
if reference_attn: | |
attn_modules = [module for module in torch_dfs(self.unet) if isinstance(module, BasicTransformerBlock)] | |
attn_modules = sorted(attn_modules, key=lambda x: -x.norm1.normalized_shape[0]) | |
for i, module in enumerate(attn_modules): | |
module._original_inner_forward = module.forward | |
module.forward = hacked_basic_transformer_inner_forward.__get__(module, BasicTransformerBlock) | |
module.bank = [] | |
module.attn_weight = float(i) / float(len(attn_modules)) | |
if reference_adain: | |
gn_modules = [self.unet.mid_block] | |
self.unet.mid_block.gn_weight = 0 | |
down_blocks = self.unet.down_blocks | |
for w, module in enumerate(down_blocks): | |
module.gn_weight = 1.0 - float(w) / float(len(down_blocks)) | |
gn_modules.append(module) | |
up_blocks = self.unet.up_blocks | |
for w, module in enumerate(up_blocks): | |
module.gn_weight = float(w) / float(len(up_blocks)) | |
gn_modules.append(module) | |
for i, module in enumerate(gn_modules): | |
if getattr(module, "original_forward", None) is None: | |
module.original_forward = module.forward | |
if i == 0: | |
# mid_block | |
module.forward = hacked_mid_forward.__get__(module, torch.nn.Module) | |
elif isinstance(module, CrossAttnDownBlock2D): | |
module.forward = hack_CrossAttnDownBlock2D_forward.__get__(module, CrossAttnDownBlock2D) | |
elif isinstance(module, DownBlock2D): | |
module.forward = hacked_DownBlock2D_forward.__get__(module, DownBlock2D) | |
elif isinstance(module, CrossAttnUpBlock2D): | |
module.forward = hacked_CrossAttnUpBlock2D_forward.__get__(module, CrossAttnUpBlock2D) | |
elif isinstance(module, UpBlock2D): | |
module.forward = hacked_UpBlock2D_forward.__get__(module, UpBlock2D) | |
module.mean_bank = [] | |
module.var_bank = [] | |
module.gn_weight *= 2 | |
# 9. Prepare added time ids & embeddings | |
add_text_embeds = pooled_prompt_embeds | |
if self.text_encoder_2 is None: | |
text_encoder_projection_dim = int(pooled_prompt_embeds.shape[-1]) | |
else: | |
text_encoder_projection_dim = self.text_encoder_2.config.projection_dim | |
add_time_ids = self._get_add_time_ids( | |
original_size, | |
crops_coords_top_left, | |
target_size, | |
dtype=prompt_embeds.dtype, | |
text_encoder_projection_dim=text_encoder_projection_dim, | |
) | |
if negative_original_size is not None and negative_target_size is not None: | |
negative_add_time_ids = self._get_add_time_ids( | |
negative_original_size, | |
negative_crops_coords_top_left, | |
negative_target_size, | |
dtype=prompt_embeds.dtype, | |
text_encoder_projection_dim=text_encoder_projection_dim, | |
) | |
else: | |
negative_add_time_ids = add_time_ids | |
if self.do_classifier_free_guidance: | |
prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds], dim=0) | |
add_text_embeds = torch.cat([negative_pooled_prompt_embeds, add_text_embeds], dim=0) | |
add_time_ids = torch.cat([negative_add_time_ids, add_time_ids], dim=0) | |
prompt_embeds = prompt_embeds.to(device) | |
add_text_embeds = add_text_embeds.to(device) | |
add_time_ids = add_time_ids.to(device).repeat(batch_size * num_images_per_prompt, 1) | |
if ip_adapter_image is not None or ip_adapter_image_embeds is not None: | |
image_embeds = self.prepare_ip_adapter_image_embeds( | |
ip_adapter_image, | |
ip_adapter_image_embeds, | |
device, | |
batch_size * num_images_per_prompt, | |
self.do_classifier_free_guidance, | |
) | |
# 10. Denoising loop | |
num_warmup_steps = max(len(timesteps) - num_inference_steps * self.scheduler.order, 0) | |
# 10.1 Apply denoising_end | |
if ( | |
self.denoising_end is not None | |
and isinstance(self.denoising_end, float) | |
and self.denoising_end > 0 | |
and self.denoising_end < 1 | |
): | |
discrete_timestep_cutoff = int( | |
round( | |
self.scheduler.config.num_train_timesteps | |
- (self.denoising_end * self.scheduler.config.num_train_timesteps) | |
) | |
) | |
num_inference_steps = len(list(filter(lambda ts: ts >= discrete_timestep_cutoff, timesteps))) | |
timesteps = timesteps[:num_inference_steps] | |
# 11. Optionally get Guidance Scale Embedding | |
timestep_cond = None | |
if self.unet.config.time_cond_proj_dim is not None: | |
guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt) | |
timestep_cond = self.get_guidance_scale_embedding( | |
guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim | |
).to(device=device, dtype=latents.dtype) | |
self._num_timesteps = len(timesteps) | |
with self.progress_bar(total=num_inference_steps) as progress_bar: | |
for i, t in enumerate(timesteps): | |
if self.interrupt: | |
continue | |
# expand the latents if we are doing classifier free guidance | |
latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents | |
latent_model_input = self.scheduler.scale_model_input(latent_model_input, t) | |
# predict the noise residual | |
added_cond_kwargs = {"text_embeds": add_text_embeds, "time_ids": add_time_ids} | |
if ip_adapter_image is not None or ip_adapter_image_embeds is not None: | |
added_cond_kwargs["image_embeds"] = image_embeds | |
# ref only part | |
if reference_keeps[i] > 0: | |
noise = randn_tensor( | |
ref_image_latents.shape, generator=generator, device=device, dtype=ref_image_latents.dtype | |
) | |
ref_xt = self.scheduler.add_noise( | |
ref_image_latents, | |
noise, | |
t.reshape( | |
1, | |
), | |
) | |
ref_xt = self.scheduler.scale_model_input(ref_xt, t) | |
MODE = "write" | |
self.unet( | |
ref_xt, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
cross_attention_kwargs=cross_attention_kwargs, | |
added_cond_kwargs=added_cond_kwargs, | |
return_dict=False, | |
) | |
# predict the noise residual | |
MODE = "read" | |
noise_pred = self.unet( | |
latent_model_input, | |
t, | |
encoder_hidden_states=prompt_embeds, | |
timestep_cond=timestep_cond, | |
cross_attention_kwargs=self.cross_attention_kwargs, | |
added_cond_kwargs=added_cond_kwargs, | |
return_dict=False, | |
)[0] | |
# perform guidance | |
if self.do_classifier_free_guidance: | |
noise_pred_uncond, noise_pred_text = noise_pred.chunk(2) | |
noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond) | |
if self.do_classifier_free_guidance and self.guidance_rescale > 0.0: | |
# Based on 3.4. in https://huggingface.co/papers/2305.08891 | |
noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale) | |
# compute the previous noisy sample x_t -> x_t-1 | |
latents_dtype = latents.dtype | |
latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0] | |
if latents.dtype != latents_dtype: | |
if torch.backends.mps.is_available(): | |
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
latents = latents.to(latents_dtype) | |
if callback_on_step_end is not None: | |
callback_kwargs = {} | |
for k in callback_on_step_end_tensor_inputs: | |
callback_kwargs[k] = locals()[k] | |
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs) | |
latents = callback_outputs.pop("latents", latents) | |
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds) | |
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds) | |
add_text_embeds = callback_outputs.pop("add_text_embeds", add_text_embeds) | |
negative_pooled_prompt_embeds = callback_outputs.pop( | |
"negative_pooled_prompt_embeds", negative_pooled_prompt_embeds | |
) | |
add_time_ids = callback_outputs.pop("add_time_ids", add_time_ids) | |
negative_add_time_ids = callback_outputs.pop("negative_add_time_ids", negative_add_time_ids) | |
# call the callback, if provided | |
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0): | |
progress_bar.update() | |
if callback is not None and i % callback_steps == 0: | |
step_idx = i // getattr(self.scheduler, "order", 1) | |
callback(step_idx, t, latents) | |
if XLA_AVAILABLE: | |
xm.mark_step() | |
if not output_type == "latent": | |
# make sure the VAE is in float32 mode, as it overflows in float16 | |
needs_upcasting = self.vae.dtype == torch.float16 and self.vae.config.force_upcast | |
if needs_upcasting: | |
self.upcast_vae() | |
latents = latents.to(next(iter(self.vae.post_quant_conv.parameters())).dtype) | |
elif latents.dtype != self.vae.dtype: | |
if torch.backends.mps.is_available(): | |
# some platforms (eg. apple mps) misbehave due to a pytorch bug: https://github.com/pytorch/pytorch/pull/99272 | |
self.vae = self.vae.to(latents.dtype) | |
# unscale/denormalize the latents | |
# denormalize with the mean and std if available and not None | |
has_latents_mean = hasattr(self.vae.config, "latents_mean") and self.vae.config.latents_mean is not None | |
has_latents_std = hasattr(self.vae.config, "latents_std") and self.vae.config.latents_std is not None | |
if has_latents_mean and has_latents_std: | |
latents_mean = ( | |
torch.tensor(self.vae.config.latents_mean).view(1, 4, 1, 1).to(latents.device, latents.dtype) | |
) | |
latents_std = ( | |
torch.tensor(self.vae.config.latents_std).view(1, 4, 1, 1).to(latents.device, latents.dtype) | |
) | |
latents = latents * latents_std / self.vae.config.scaling_factor + latents_mean | |
else: | |
latents = latents / self.vae.config.scaling_factor | |
image = self.vae.decode(latents, return_dict=False)[0] | |
# cast back to fp16 if needed | |
if needs_upcasting: | |
self.vae.to(dtype=torch.float16) | |
else: | |
image = latents | |
if not output_type == "latent": | |
# apply watermark if available | |
if self.watermark is not None: | |
image = self.watermark.apply_watermark(image) | |
image = self.image_processor.postprocess(image, output_type=output_type) | |
# Offload all models | |
self.maybe_free_model_hooks() | |
if not return_dict: | |
return (image,) | |
return StableDiffusionXLPipelineOutput(images=image) | |