File size: 28,969 Bytes
22a452a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
#     http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.

import gc
import os
import shutil
import unittest
from collections import OrderedDict
from pathlib import Path

import torch
from transformers import CLIPVisionConfig, CLIPVisionModelWithProjection

from diffusers import (
    AutoPipelineForImage2Image,
    AutoPipelineForInpainting,
    AutoPipelineForText2Image,
    ControlNetModel,
    DiffusionPipeline,
)
from diffusers.pipelines.auto_pipeline import (
    AUTO_IMAGE2IMAGE_PIPELINES_MAPPING,
    AUTO_INPAINT_PIPELINES_MAPPING,
    AUTO_TEXT2IMAGE_PIPELINES_MAPPING,
)
from diffusers.utils.testing_utils import slow


PRETRAINED_MODEL_REPO_MAPPING = OrderedDict(
    [
        ("stable-diffusion", "stable-diffusion-v1-5/stable-diffusion-v1-5"),
        ("if", "DeepFloyd/IF-I-XL-v1.0"),
        ("kandinsky", "kandinsky-community/kandinsky-2-1"),
        ("kandinsky22", "kandinsky-community/kandinsky-2-2-decoder"),
    ]
)


class AutoPipelineFastTest(unittest.TestCase):
    @property
    def dummy_image_encoder(self):
        torch.manual_seed(0)
        config = CLIPVisionConfig(
            hidden_size=1,
            projection_dim=1,
            num_hidden_layers=1,
            num_attention_heads=1,
            image_size=1,
            intermediate_size=1,
            patch_size=1,
        )
        return CLIPVisionModelWithProjection(config)

    def test_from_pipe_consistent(self):
        pipe = AutoPipelineForText2Image.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-pipe", requires_safety_checker=False
        )
        original_config = dict(pipe.config)

        pipe = AutoPipelineForImage2Image.from_pipe(pipe)
        assert dict(pipe.config) == original_config

        pipe = AutoPipelineForText2Image.from_pipe(pipe)
        assert dict(pipe.config) == original_config

    def test_from_pipe_override(self):
        pipe = AutoPipelineForText2Image.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-pipe", requires_safety_checker=False
        )

        pipe = AutoPipelineForImage2Image.from_pipe(pipe, requires_safety_checker=True)
        assert pipe.config.requires_safety_checker is True

        pipe = AutoPipelineForText2Image.from_pipe(pipe, requires_safety_checker=True)
        assert pipe.config.requires_safety_checker is True

    def test_from_pipe_consistent_sdxl(self):
        pipe = AutoPipelineForImage2Image.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-xl-pipe",
            requires_aesthetics_score=True,
            force_zeros_for_empty_prompt=False,
        )

        original_config = dict(pipe.config)

        pipe = AutoPipelineForText2Image.from_pipe(pipe)
        pipe = AutoPipelineForImage2Image.from_pipe(pipe)

        assert dict(pipe.config) == original_config

    def test_kwargs_local_files_only(self):
        repo = "hf-internal-testing/tiny-stable-diffusion-torch"
        tmpdirname = DiffusionPipeline.download(repo)
        tmpdirname = Path(tmpdirname)

        # edit commit_id to so that it's not the latest commit
        commit_id = tmpdirname.name
        new_commit_id = commit_id + "hug"

        ref_dir = tmpdirname.parent.parent / "refs/main"
        with open(ref_dir, "w") as f:
            f.write(new_commit_id)

        new_tmpdirname = tmpdirname.parent / new_commit_id
        os.rename(tmpdirname, new_tmpdirname)

        try:
            AutoPipelineForText2Image.from_pretrained(repo, local_files_only=True)
        except OSError:
            assert False, "not able to load local files"

        shutil.rmtree(tmpdirname.parent.parent)

    def test_from_pretrained_text2img(self):
        repo = "hf-internal-testing/tiny-stable-diffusion-xl-pipe"
        pipe = AutoPipelineForText2Image.from_pretrained(repo)
        assert pipe.__class__.__name__ == "StableDiffusionXLPipeline"

        controlnet = ControlNetModel.from_pretrained("hf-internal-testing/tiny-controlnet")
        pipe_control = AutoPipelineForText2Image.from_pretrained(repo, controlnet=controlnet)
        assert pipe_control.__class__.__name__ == "StableDiffusionXLControlNetPipeline"

        pipe_pag = AutoPipelineForText2Image.from_pretrained(repo, enable_pag=True)
        assert pipe_pag.__class__.__name__ == "StableDiffusionXLPAGPipeline"

        pipe_control_pag = AutoPipelineForText2Image.from_pretrained(repo, controlnet=controlnet, enable_pag=True)
        assert pipe_control_pag.__class__.__name__ == "StableDiffusionXLControlNetPAGPipeline"

    def test_from_pipe_pag_text2img(self):
        # test from StableDiffusionXLPipeline
        pipe = AutoPipelineForText2Image.from_pretrained("hf-internal-testing/tiny-stable-diffusion-xl-pipe")
        controlnet = ControlNetModel.from_pretrained("hf-internal-testing/tiny-controlnet")

        #  - test `enable_pag` flag
        pipe_pag = AutoPipelineForText2Image.from_pipe(pipe, enable_pag=True)
        assert pipe_pag.__class__.__name__ == "StableDiffusionXLPAGPipeline"
        assert "controlnet" not in pipe_pag.components

        pipe = AutoPipelineForText2Image.from_pipe(pipe, enable_pag=False)
        assert pipe.__class__.__name__ == "StableDiffusionXLPipeline"
        assert "controlnet" not in pipe.components

        #  - test `enabe_pag` + `controlnet` flag
        pipe_control_pag = AutoPipelineForText2Image.from_pipe(pipe, controlnet=controlnet, enable_pag=True)
        assert pipe_control_pag.__class__.__name__ == "StableDiffusionXLControlNetPAGPipeline"
        assert "controlnet" in pipe_control_pag.components

        pipe_control = AutoPipelineForText2Image.from_pipe(pipe, controlnet=controlnet, enable_pag=False)
        assert pipe_control.__class__.__name__ == "StableDiffusionXLControlNetPipeline"
        assert "controlnet" in pipe_control.components

        pipe_pag = AutoPipelineForText2Image.from_pipe(pipe, controlnet=None, enable_pag=True)
        assert pipe_pag.__class__.__name__ == "StableDiffusionXLPAGPipeline"
        assert "controlnet" not in pipe_pag.components

        pipe = AutoPipelineForText2Image.from_pipe(pipe, controlnet=None, enable_pag=False)
        assert pipe.__class__.__name__ == "StableDiffusionXLPipeline"
        assert "controlnet" not in pipe.components

        # test from StableDiffusionXLControlNetPipeline
        # - test `enable_pag` flag
        pipe_control_pag = AutoPipelineForText2Image.from_pipe(pipe_control, enable_pag=True)
        assert pipe_control_pag.__class__.__name__ == "StableDiffusionXLControlNetPAGPipeline"
        assert "controlnet" in pipe_control_pag.components

        pipe_control = AutoPipelineForText2Image.from_pipe(pipe_control, enable_pag=False)
        assert pipe_control.__class__.__name__ == "StableDiffusionXLControlNetPipeline"
        assert "controlnet" in pipe_control.components

        # - test `enable_pag` + `controlnet` flag
        pipe_control_pag = AutoPipelineForText2Image.from_pipe(pipe_control, controlnet=controlnet, enable_pag=True)
        assert pipe_control_pag.__class__.__name__ == "StableDiffusionXLControlNetPAGPipeline"
        assert "controlnet" in pipe_control_pag.components

        pipe_control = AutoPipelineForText2Image.from_pipe(pipe_control, controlnet=controlnet, enable_pag=False)
        assert pipe_control.__class__.__name__ == "StableDiffusionXLControlNetPipeline"
        assert "controlnet" in pipe_control.components

        pipe_pag = AutoPipelineForText2Image.from_pipe(pipe_control, controlnet=None, enable_pag=True)
        assert pipe_pag.__class__.__name__ == "StableDiffusionXLPAGPipeline"
        assert "controlnet" not in pipe_pag.components

        pipe = AutoPipelineForText2Image.from_pipe(pipe_control, controlnet=None, enable_pag=False)
        assert pipe.__class__.__name__ == "StableDiffusionXLPipeline"
        assert "controlnet" not in pipe.components

        # test from StableDiffusionXLControlNetPAGPipeline
        # - test `enable_pag` flag
        pipe_control_pag = AutoPipelineForText2Image.from_pipe(pipe_control_pag, enable_pag=True)
        assert pipe_control_pag.__class__.__name__ == "StableDiffusionXLControlNetPAGPipeline"
        assert "controlnet" in pipe_control_pag.components

        pipe_control = AutoPipelineForText2Image.from_pipe(pipe_control_pag, enable_pag=False)
        assert pipe_control.__class__.__name__ == "StableDiffusionXLControlNetPipeline"
        assert "controlnet" in pipe_control.components

        # - test `enable_pag` + `controlnet` flag
        pipe_control_pag = AutoPipelineForText2Image.from_pipe(
            pipe_control_pag, controlnet=controlnet, enable_pag=True
        )
        assert pipe_control_pag.__class__.__name__ == "StableDiffusionXLControlNetPAGPipeline"
        assert "controlnet" in pipe_control_pag.components

        pipe_control = AutoPipelineForText2Image.from_pipe(pipe_control_pag, controlnet=controlnet, enable_pag=False)
        assert pipe_control.__class__.__name__ == "StableDiffusionXLControlNetPipeline"
        assert "controlnet" in pipe_control.components

        pipe_pag = AutoPipelineForText2Image.from_pipe(pipe_control_pag, controlnet=None, enable_pag=True)
        assert pipe_pag.__class__.__name__ == "StableDiffusionXLPAGPipeline"
        assert "controlnet" not in pipe_pag.components

        pipe = AutoPipelineForText2Image.from_pipe(pipe_control_pag, controlnet=None, enable_pag=False)
        assert pipe.__class__.__name__ == "StableDiffusionXLPipeline"
        assert "controlnet" not in pipe.components

        pipe = AutoPipelineForText2Image.from_pipe(pipe_control_pag, enable_pag=False)
        assert pipe.__class__.__name__ == "StableDiffusionXLControlNetPipeline"
        assert "controlnet" in pipe.components

    def test_from_pretrained_img2img(self):
        repo = "hf-internal-testing/tiny-stable-diffusion-xl-pipe"

        pipe = AutoPipelineForImage2Image.from_pretrained(repo)
        assert pipe.__class__.__name__ == "StableDiffusionXLImg2ImgPipeline"

        controlnet = ControlNetModel.from_pretrained("hf-internal-testing/tiny-controlnet")
        pipe_control = AutoPipelineForImage2Image.from_pretrained(repo, controlnet=controlnet)
        assert pipe_control.__class__.__name__ == "StableDiffusionXLControlNetImg2ImgPipeline"

        pipe_pag = AutoPipelineForImage2Image.from_pretrained(repo, enable_pag=True)
        assert pipe_pag.__class__.__name__ == "StableDiffusionXLPAGImg2ImgPipeline"

        pipe_control_pag = AutoPipelineForImage2Image.from_pretrained(repo, controlnet=controlnet, enable_pag=True)
        assert pipe_control_pag.__class__.__name__ == "StableDiffusionXLControlNetPAGImg2ImgPipeline"

    def test_from_pretrained_img2img_refiner(self):
        repo = "hf-internal-testing/tiny-stable-diffusion-xl-refiner-pipe"

        pipe = AutoPipelineForImage2Image.from_pretrained(repo)
        assert pipe.__class__.__name__ == "StableDiffusionXLImg2ImgPipeline"

        controlnet = ControlNetModel.from_pretrained("hf-internal-testing/tiny-controlnet")
        pipe_control = AutoPipelineForImage2Image.from_pretrained(repo, controlnet=controlnet)
        assert pipe_control.__class__.__name__ == "StableDiffusionXLControlNetImg2ImgPipeline"

        pipe_pag = AutoPipelineForImage2Image.from_pretrained(repo, enable_pag=True)
        assert pipe_pag.__class__.__name__ == "StableDiffusionXLPAGImg2ImgPipeline"

        pipe_control_pag = AutoPipelineForImage2Image.from_pretrained(repo, controlnet=controlnet, enable_pag=True)
        assert pipe_control_pag.__class__.__name__ == "StableDiffusionXLControlNetPAGImg2ImgPipeline"

    def test_from_pipe_pag_img2img(self):
        # test from tableDiffusionXLPAGImg2ImgPipeline
        pipe = AutoPipelineForImage2Image.from_pretrained("hf-internal-testing/tiny-stable-diffusion-xl-pipe")
        # - test `enable_pag` flag
        pipe_pag = AutoPipelineForImage2Image.from_pipe(pipe, enable_pag=True)
        assert pipe_pag.__class__.__name__ == "StableDiffusionXLPAGImg2ImgPipeline"

        pipe = AutoPipelineForImage2Image.from_pipe(pipe, enable_pag=False)
        assert pipe.__class__.__name__ == "StableDiffusionXLImg2ImgPipeline"

        # testing from StableDiffusionXLPAGImg2ImgPipeline
        # - test `enable_pag` flag
        pipe_pag = AutoPipelineForImage2Image.from_pipe(pipe_pag, enable_pag=True)
        assert pipe_pag.__class__.__name__ == "StableDiffusionXLPAGImg2ImgPipeline"

        pipe = AutoPipelineForImage2Image.from_pipe(pipe_pag, enable_pag=False)
        assert pipe.__class__.__name__ == "StableDiffusionXLImg2ImgPipeline"

    def test_from_pretrained_inpaint(self):
        repo = "hf-internal-testing/tiny-stable-diffusion-xl-pipe"

        pipe = AutoPipelineForInpainting.from_pretrained(repo)
        assert pipe.__class__.__name__ == "StableDiffusionXLInpaintPipeline"

        pipe_pag = AutoPipelineForInpainting.from_pretrained(repo, enable_pag=True)
        assert pipe_pag.__class__.__name__ == "StableDiffusionXLPAGInpaintPipeline"

    def test_from_pretrained_inpaint_from_inpaint(self):
        repo = "hf-internal-testing/tiny-stable-diffusion-xl-inpaint-pipe"

        pipe = AutoPipelineForInpainting.from_pretrained(repo)
        assert pipe.__class__.__name__ == "StableDiffusionXLInpaintPipeline"

        # make sure you can use pag with inpaint-specific pipeline
        pipe = AutoPipelineForInpainting.from_pretrained(repo, enable_pag=True)
        assert pipe.__class__.__name__ == "StableDiffusionXLPAGInpaintPipeline"

    def test_from_pipe_pag_inpaint(self):
        # test from tableDiffusionXLPAGInpaintPipeline
        pipe = AutoPipelineForInpainting.from_pretrained("hf-internal-testing/tiny-stable-diffusion-xl-pipe")
        # - test `enable_pag` flag
        pipe_pag = AutoPipelineForInpainting.from_pipe(pipe, enable_pag=True)
        assert pipe_pag.__class__.__name__ == "StableDiffusionXLPAGInpaintPipeline"

        pipe = AutoPipelineForInpainting.from_pipe(pipe, enable_pag=False)
        assert pipe.__class__.__name__ == "StableDiffusionXLInpaintPipeline"

        # testing from StableDiffusionXLPAGInpaintPipeline
        # - test `enable_pag` flag
        pipe_pag = AutoPipelineForInpainting.from_pipe(pipe_pag, enable_pag=True)
        assert pipe_pag.__class__.__name__ == "StableDiffusionXLPAGInpaintPipeline"

        pipe = AutoPipelineForInpainting.from_pipe(pipe_pag, enable_pag=False)
        assert pipe.__class__.__name__ == "StableDiffusionXLInpaintPipeline"

    def test_from_pipe_pag_new_task(self):
        # for from_pipe_new_task we only need to make sure it can map to the same pipeline from a different task,
        # i.e. no need to test `enable_pag` + `controlnet` flag because it is already tested in `test_from_pipe_pag_text2img` and `test_from_pipe_pag_inpaint`etc
        pipe_pag_text2img = AutoPipelineForText2Image.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-xl-pipe", enable_pag=True
        )

        # text2img pag -> inpaint pag
        pipe_pag_inpaint = AutoPipelineForInpainting.from_pipe(pipe_pag_text2img)
        assert pipe_pag_inpaint.__class__.__name__ == "StableDiffusionXLPAGInpaintPipeline"
        # text2img pag -> img2img pag
        pipe_pag_img2img = AutoPipelineForImage2Image.from_pipe(pipe_pag_text2img)
        assert pipe_pag_img2img.__class__.__name__ == "StableDiffusionXLPAGImg2ImgPipeline"

        # inpaint pag -> text2img pag
        pipe_pag_text2img = AutoPipelineForText2Image.from_pipe(pipe_pag_inpaint)
        assert pipe_pag_text2img.__class__.__name__ == "StableDiffusionXLPAGPipeline"
        # inpaint pag -> img2img pag
        pipe_pag_img2img = AutoPipelineForImage2Image.from_pipe(pipe_pag_inpaint)
        assert pipe_pag_img2img.__class__.__name__ == "StableDiffusionXLPAGImg2ImgPipeline"

        # img2img pag -> text2img pag
        pipe_pag_text2img = AutoPipelineForText2Image.from_pipe(pipe_pag_img2img)
        assert pipe_pag_text2img.__class__.__name__ == "StableDiffusionXLPAGPipeline"
        # img2img pag -> inpaint pag
        pipe_pag_inpaint = AutoPipelineForInpainting.from_pipe(pipe_pag_img2img)
        assert pipe_pag_inpaint.__class__.__name__ == "StableDiffusionXLPAGInpaintPipeline"

    def test_from_pipe_controlnet_text2img(self):
        pipe = AutoPipelineForText2Image.from_pretrained("hf-internal-testing/tiny-stable-diffusion-pipe")
        controlnet = ControlNetModel.from_pretrained("hf-internal-testing/tiny-controlnet")

        pipe = AutoPipelineForText2Image.from_pipe(pipe, controlnet=controlnet)
        assert pipe.__class__.__name__ == "StableDiffusionControlNetPipeline"
        assert "controlnet" in pipe.components

        pipe = AutoPipelineForText2Image.from_pipe(pipe, controlnet=None)
        assert pipe.__class__.__name__ == "StableDiffusionPipeline"
        assert "controlnet" not in pipe.components

    def test_from_pipe_controlnet_img2img(self):
        pipe = AutoPipelineForImage2Image.from_pretrained("hf-internal-testing/tiny-stable-diffusion-pipe")
        controlnet = ControlNetModel.from_pretrained("hf-internal-testing/tiny-controlnet")

        pipe = AutoPipelineForImage2Image.from_pipe(pipe, controlnet=controlnet)
        assert pipe.__class__.__name__ == "StableDiffusionControlNetImg2ImgPipeline"
        assert "controlnet" in pipe.components

        pipe = AutoPipelineForImage2Image.from_pipe(pipe, controlnet=None)
        assert pipe.__class__.__name__ == "StableDiffusionImg2ImgPipeline"
        assert "controlnet" not in pipe.components

    def test_from_pipe_controlnet_inpaint(self):
        pipe = AutoPipelineForInpainting.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
        controlnet = ControlNetModel.from_pretrained("hf-internal-testing/tiny-controlnet")

        pipe = AutoPipelineForInpainting.from_pipe(pipe, controlnet=controlnet)
        assert pipe.__class__.__name__ == "StableDiffusionControlNetInpaintPipeline"
        assert "controlnet" in pipe.components

        pipe = AutoPipelineForInpainting.from_pipe(pipe, controlnet=None)
        assert pipe.__class__.__name__ == "StableDiffusionInpaintPipeline"
        assert "controlnet" not in pipe.components

    def test_from_pipe_controlnet_new_task(self):
        pipe_text2img = AutoPipelineForText2Image.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
        controlnet = ControlNetModel.from_pretrained("hf-internal-testing/tiny-controlnet")

        pipe_control_img2img = AutoPipelineForImage2Image.from_pipe(pipe_text2img, controlnet=controlnet)
        assert pipe_control_img2img.__class__.__name__ == "StableDiffusionControlNetImg2ImgPipeline"
        assert "controlnet" in pipe_control_img2img.components

        pipe_inpaint = AutoPipelineForInpainting.from_pipe(pipe_control_img2img, controlnet=None)
        assert pipe_inpaint.__class__.__name__ == "StableDiffusionInpaintPipeline"
        assert "controlnet" not in pipe_inpaint.components

        # testing `from_pipe` for text2img controlnet
        ## 1. from a different controlnet pipe, without controlnet argument
        pipe_control_text2img = AutoPipelineForText2Image.from_pipe(pipe_control_img2img)
        assert pipe_control_text2img.__class__.__name__ == "StableDiffusionControlNetPipeline"
        assert "controlnet" in pipe_control_text2img.components

        ## 2. from a different controlnet pipe, with controlnet argument
        pipe_control_text2img = AutoPipelineForText2Image.from_pipe(pipe_control_img2img, controlnet=controlnet)
        assert pipe_control_text2img.__class__.__name__ == "StableDiffusionControlNetPipeline"
        assert "controlnet" in pipe_control_text2img.components

        ## 3. from same controlnet pipeline class, with a different controlnet component
        pipe_control_text2img = AutoPipelineForText2Image.from_pipe(pipe_control_text2img, controlnet=controlnet)
        assert pipe_control_text2img.__class__.__name__ == "StableDiffusionControlNetPipeline"
        assert "controlnet" in pipe_control_text2img.components

        # testing from_pipe for inpainting
        ## 1. from a different controlnet pipeline class
        pipe_control_inpaint = AutoPipelineForInpainting.from_pipe(pipe_control_img2img)
        assert pipe_control_inpaint.__class__.__name__ == "StableDiffusionControlNetInpaintPipeline"
        assert "controlnet" in pipe_control_inpaint.components

        ## from a different controlnet pipe, with a different controlnet
        pipe_control_inpaint = AutoPipelineForInpainting.from_pipe(pipe_control_img2img, controlnet=controlnet)
        assert pipe_control_inpaint.__class__.__name__ == "StableDiffusionControlNetInpaintPipeline"
        assert "controlnet" in pipe_control_inpaint.components

        ## from same controlnet pipe, with a different controlnet
        pipe_control_inpaint = AutoPipelineForInpainting.from_pipe(pipe_control_inpaint, controlnet=controlnet)
        assert pipe_control_inpaint.__class__.__name__ == "StableDiffusionControlNetInpaintPipeline"
        assert "controlnet" in pipe_control_inpaint.components

        # testing from_pipe from img2img controlnet
        ## from a different controlnet pipe, without controlnet argument
        pipe_control_img2img = AutoPipelineForImage2Image.from_pipe(pipe_control_text2img)
        assert pipe_control_img2img.__class__.__name__ == "StableDiffusionControlNetImg2ImgPipeline"
        assert "controlnet" in pipe_control_img2img.components

        # from a different controlnet pipe, with a different controlnet component
        pipe_control_img2img = AutoPipelineForImage2Image.from_pipe(pipe_control_text2img, controlnet=controlnet)
        assert pipe_control_img2img.__class__.__name__ == "StableDiffusionControlNetImg2ImgPipeline"
        assert "controlnet" in pipe_control_img2img.components

        # from same controlnet pipeline class, with a different controlnet
        pipe_control_img2img = AutoPipelineForImage2Image.from_pipe(pipe_control_img2img, controlnet=controlnet)
        assert pipe_control_img2img.__class__.__name__ == "StableDiffusionControlNetImg2ImgPipeline"
        assert "controlnet" in pipe_control_img2img.components

    def test_from_pipe_optional_components(self):
        image_encoder = self.dummy_image_encoder

        pipe = AutoPipelineForText2Image.from_pretrained(
            "hf-internal-testing/tiny-stable-diffusion-pipe",
            image_encoder=image_encoder,
        )

        pipe = AutoPipelineForImage2Image.from_pipe(pipe)
        assert pipe.image_encoder is not None

        pipe = AutoPipelineForText2Image.from_pipe(pipe, image_encoder=None)
        assert pipe.image_encoder is None


@slow
class AutoPipelineIntegrationTest(unittest.TestCase):
    def test_pipe_auto(self):
        for model_name, model_repo in PRETRAINED_MODEL_REPO_MAPPING.items():
            # test txt2img
            pipe_txt2img = AutoPipelineForText2Image.from_pretrained(
                model_repo, variant="fp16", torch_dtype=torch.float16
            )
            self.assertIsInstance(pipe_txt2img, AUTO_TEXT2IMAGE_PIPELINES_MAPPING[model_name])

            pipe_to = AutoPipelineForText2Image.from_pipe(pipe_txt2img)
            self.assertIsInstance(pipe_to, AUTO_TEXT2IMAGE_PIPELINES_MAPPING[model_name])

            pipe_to = AutoPipelineForImage2Image.from_pipe(pipe_txt2img)
            self.assertIsInstance(pipe_to, AUTO_IMAGE2IMAGE_PIPELINES_MAPPING[model_name])

            if "kandinsky" not in model_name:
                pipe_to = AutoPipelineForInpainting.from_pipe(pipe_txt2img)
                self.assertIsInstance(pipe_to, AUTO_INPAINT_PIPELINES_MAPPING[model_name])

            del pipe_txt2img, pipe_to
            gc.collect()

            # test img2img

            pipe_img2img = AutoPipelineForImage2Image.from_pretrained(
                model_repo, variant="fp16", torch_dtype=torch.float16
            )
            self.assertIsInstance(pipe_img2img, AUTO_IMAGE2IMAGE_PIPELINES_MAPPING[model_name])

            pipe_to = AutoPipelineForText2Image.from_pipe(pipe_img2img)
            self.assertIsInstance(pipe_to, AUTO_TEXT2IMAGE_PIPELINES_MAPPING[model_name])

            pipe_to = AutoPipelineForImage2Image.from_pipe(pipe_img2img)
            self.assertIsInstance(pipe_to, AUTO_IMAGE2IMAGE_PIPELINES_MAPPING[model_name])

            if "kandinsky" not in model_name:
                pipe_to = AutoPipelineForInpainting.from_pipe(pipe_img2img)
                self.assertIsInstance(pipe_to, AUTO_INPAINT_PIPELINES_MAPPING[model_name])

            del pipe_img2img, pipe_to
            gc.collect()

            # test inpaint

            if "kandinsky" not in model_name:
                pipe_inpaint = AutoPipelineForInpainting.from_pretrained(
                    model_repo, variant="fp16", torch_dtype=torch.float16
                )
                self.assertIsInstance(pipe_inpaint, AUTO_INPAINT_PIPELINES_MAPPING[model_name])

                pipe_to = AutoPipelineForText2Image.from_pipe(pipe_inpaint)
                self.assertIsInstance(pipe_to, AUTO_TEXT2IMAGE_PIPELINES_MAPPING[model_name])

                pipe_to = AutoPipelineForImage2Image.from_pipe(pipe_inpaint)
                self.assertIsInstance(pipe_to, AUTO_IMAGE2IMAGE_PIPELINES_MAPPING[model_name])

                pipe_to = AutoPipelineForInpainting.from_pipe(pipe_inpaint)
                self.assertIsInstance(pipe_to, AUTO_INPAINT_PIPELINES_MAPPING[model_name])

                del pipe_inpaint, pipe_to
                gc.collect()

    def test_from_pipe_consistent(self):
        for model_name, model_repo in PRETRAINED_MODEL_REPO_MAPPING.items():
            if model_name in ["kandinsky", "kandinsky22"]:
                auto_pipes = [AutoPipelineForText2Image, AutoPipelineForImage2Image]
            else:
                auto_pipes = [AutoPipelineForText2Image, AutoPipelineForImage2Image, AutoPipelineForInpainting]

            # test from_pretrained
            for pipe_from_class in auto_pipes:
                pipe_from = pipe_from_class.from_pretrained(model_repo, variant="fp16", torch_dtype=torch.float16)
                pipe_from_config = dict(pipe_from.config)

                for pipe_to_class in auto_pipes:
                    pipe_to = pipe_to_class.from_pipe(pipe_from)
                    self.assertEqual(dict(pipe_to.config), pipe_from_config)

                del pipe_from, pipe_to
                gc.collect()

    def test_controlnet(self):
        # test from_pretrained
        model_repo = "stable-diffusion-v1-5/stable-diffusion-v1-5"
        controlnet_repo = "lllyasviel/sd-controlnet-canny"

        controlnet = ControlNetModel.from_pretrained(controlnet_repo, torch_dtype=torch.float16)

        pipe_txt2img = AutoPipelineForText2Image.from_pretrained(
            model_repo, controlnet=controlnet, torch_dtype=torch.float16
        )
        self.assertIsInstance(pipe_txt2img, AUTO_TEXT2IMAGE_PIPELINES_MAPPING["stable-diffusion-controlnet"])

        pipe_img2img = AutoPipelineForImage2Image.from_pretrained(
            model_repo, controlnet=controlnet, torch_dtype=torch.float16
        )
        self.assertIsInstance(pipe_img2img, AUTO_IMAGE2IMAGE_PIPELINES_MAPPING["stable-diffusion-controlnet"])

        pipe_inpaint = AutoPipelineForInpainting.from_pretrained(
            model_repo, controlnet=controlnet, torch_dtype=torch.float16
        )
        self.assertIsInstance(pipe_inpaint, AUTO_INPAINT_PIPELINES_MAPPING["stable-diffusion-controlnet"])

        # test from_pipe
        for pipe_from in [pipe_txt2img, pipe_img2img, pipe_inpaint]:
            pipe_to = AutoPipelineForText2Image.from_pipe(pipe_from)
            self.assertIsInstance(pipe_to, AUTO_TEXT2IMAGE_PIPELINES_MAPPING["stable-diffusion-controlnet"])
            self.assertEqual(dict(pipe_to.config), dict(pipe_txt2img.config))

            pipe_to = AutoPipelineForImage2Image.from_pipe(pipe_from)
            self.assertIsInstance(pipe_to, AUTO_IMAGE2IMAGE_PIPELINES_MAPPING["stable-diffusion-controlnet"])
            self.assertEqual(dict(pipe_to.config), dict(pipe_img2img.config))

            pipe_to = AutoPipelineForInpainting.from_pipe(pipe_from)
            self.assertIsInstance(pipe_to, AUTO_INPAINT_PIPELINES_MAPPING["stable-diffusion-controlnet"])
            self.assertEqual(dict(pipe_to.config), dict(pipe_inpaint.config))