File size: 79,722 Bytes
22a452a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593
594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647
648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701
702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755
756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809
810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863
864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917
918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971
972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
import inspect
import math
from typing import Any, Callable, Dict, List, Optional, Union

import torch
import torchvision.transforms.functional as FF
from transformers import CLIPImageProcessor, CLIPTextModel, CLIPTokenizer, CLIPVisionModelWithProjection

from diffusers.callbacks import MultiPipelineCallbacks, PipelineCallback
from diffusers.image_processor import PipelineImageInput, VaeImageProcessor
from diffusers.loaders import StableDiffusionLoraLoaderMixin
from diffusers.loaders.ip_adapter import IPAdapterMixin
from diffusers.loaders.lora_pipeline import LoraLoaderMixin
from diffusers.loaders.single_file import FromSingleFileMixin
from diffusers.loaders.textual_inversion import TextualInversionLoaderMixin
from diffusers.models import AutoencoderKL, UNet2DConditionModel
from diffusers.models.lora import adjust_lora_scale_text_encoder
from diffusers.pipelines.pipeline_utils import DiffusionPipeline
from diffusers.pipelines.stable_diffusion.pipeline_output import StableDiffusionPipelineOutput
from diffusers.pipelines.stable_diffusion.safety_checker import StableDiffusionSafetyChecker
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import (
    USE_PEFT_BACKEND,
    deprecate,
    is_torch_xla_available,
    logging,
    scale_lora_layers,
    unscale_lora_layers,
)
from diffusers.utils.torch_utils import randn_tensor


logger = logging.get_logger(__name__)  # pylint: disable=invalid-name

if is_torch_xla_available():
    import torch_xla.core.xla_model as xm

    XLA_AVAILABLE = True
else:
    XLA_AVAILABLE = False


try:
    from compel import Compel
except ImportError:
    Compel = None

KBASE = "ADDBASE"
KCOMM = "ADDCOMM"
KBRK = "BREAK"


class RegionalPromptingStableDiffusionPipeline(
    DiffusionPipeline,
    TextualInversionLoaderMixin,
    LoraLoaderMixin,
    IPAdapterMixin,
    FromSingleFileMixin,
    StableDiffusionLoraLoaderMixin,
):
    r"""

    Args for Regional Prompting Pipeline:

        rp_args:dict

        Required

            rp_args["mode"]: cols, rows, prompt, prompt-ex

        for cols, rows mode

            rp_args["div"]: ex) 1;1;1(Divide into 3 regions)

        for prompt, prompt-ex mode

            rp_args["th"]: ex) 0.5,0.5,0.6 (threshold for prompt mode)



        Optional

            rp_args["save_mask"]: True/False (save masks in prompt mode)

            rp_args["power"]: int (power for attention maps in prompt mode)

            rp_args["base_ratio"]:

                float (Sets the ratio of the base prompt)

                ex) 0.2 (20%*BASE_PROMPT + 80%*REGION_PROMPT)

                [Use base prompt](https://github.com/hako-mikan/sd-webui-regional-prompter?tab=readme-ov-file#use-base-prompt)



    Pipeline for text-to-image generation using Stable Diffusion.



    This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods the

    library implements for all the pipelines (such as downloading or saving, running on a particular device, etc.)



    Args:

        vae ([`AutoencoderKL`]):

            Variational Auto-Encoder (VAE) Model to encode and decode images to and from latent representations.

        text_encoder ([`CLIPTextModel`]):

            Frozen text-encoder. Stable Diffusion uses the text portion of

            [CLIP](https://huggingface.co/docs/transformers/model_doc/clip#transformers.CLIPTextModel), specifically

            the [clip-vit-large-patch14](https://huggingface.co/openai/clip-vit-large-patch14) variant.

        tokenizer (`CLIPTokenizer`):

            Tokenizer of class

            [CLIPTokenizer](https://huggingface.co/docs/transformers/v4.21.0/en/model_doc/clip#transformers.CLIPTokenizer).

        unet ([`UNet2DConditionModel`]): Conditional U-Net architecture to denoise the encoded image latents.

        scheduler ([`SchedulerMixin`]):

            A scheduler to be used in combination with `unet` to denoise the encoded image latents. Can be one of

            [`DDIMScheduler`], [`LMSDiscreteScheduler`], or [`PNDMScheduler`].

        safety_checker ([`StableDiffusionSafetyChecker`]):

            Classification module that estimates whether generated images could be considered offensive or harmful.

            Please, refer to the [model card](https://huggingface.co/CompVis/stable-diffusion-v1-4) for details.

        feature_extractor ([`CLIPImageProcessor`]):

            Model that extracts features from generated images to be used as inputs for the `safety_checker`.

    """

    def __init__(

        self,

        vae: AutoencoderKL,

        text_encoder: CLIPTextModel,

        tokenizer: CLIPTokenizer,

        unet: UNet2DConditionModel,

        scheduler: KarrasDiffusionSchedulers,

        safety_checker: StableDiffusionSafetyChecker,

        feature_extractor: CLIPImageProcessor,

        image_encoder: CLIPVisionModelWithProjection = None,

        requires_safety_checker: bool = True,

    ):
        super().__init__()
        self.register_modules(
            vae=vae,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            unet=unet,
            scheduler=scheduler,
            safety_checker=safety_checker,
            feature_extractor=feature_extractor,
            image_encoder=image_encoder,
        )
        self.vae_scale_factor = 2 ** (len(self.vae.config.block_out_channels) - 1) if getattr(self, "vae", None) else 8
        self.image_processor = VaeImageProcessor(vae_scale_factor=self.vae_scale_factor)
        self.register_to_config(requires_safety_checker=requires_safety_checker)

        # Initialize additional properties needed for DiffusionPipeline
        self._num_timesteps = None
        self._interrupt = False
        self._guidance_scale = 7.5
        self._guidance_rescale = 0.0
        self._clip_skip = None
        self._cross_attention_kwargs = None

    @torch.no_grad()
    def __call__(

        self,

        prompt: str,

        height: int = 512,

        width: int = 512,

        num_inference_steps: int = 50,

        guidance_scale: float = 7.5,

        negative_prompt: str = None,

        num_images_per_prompt: Optional[int] = 1,

        eta: float = 0.0,

        generator: Optional[torch.Generator] = None,

        latents: Optional[torch.Tensor] = None,

        output_type: Optional[str] = "pil",

        return_dict: bool = True,

        rp_args: Dict[str, str] = None,

    ):
        active = KBRK in prompt[0] if isinstance(prompt, list) else KBRK in prompt
        use_base = KBASE in prompt[0] if isinstance(prompt, list) else KBASE in prompt
        if negative_prompt is None:
            negative_prompt = "" if isinstance(prompt, str) else [""] * len(prompt)

        device = self._execution_device
        regions = 0

        self.base_ratio = float(rp_args["base_ratio"]) if "base_ratio" in rp_args else 0.0
        self.power = int(rp_args["power"]) if "power" in rp_args else 1

        prompts = prompt if isinstance(prompt, list) else [prompt]
        n_prompts = negative_prompt if isinstance(negative_prompt, list) else [negative_prompt]
        self.batch = batch = num_images_per_prompt * len(prompts)

        if use_base:
            bases = prompts.copy()
            n_bases = n_prompts.copy()

            for i, prompt in enumerate(prompts):
                parts = prompt.split(KBASE)
                if len(parts) == 2:
                    bases[i], prompts[i] = parts
                elif len(parts) > 2:
                    raise ValueError(f"Multiple instances of {KBASE} found in prompt: {prompt}")
            for i, prompt in enumerate(n_prompts):
                n_parts = prompt.split(KBASE)
                if len(n_parts) == 2:
                    n_bases[i], n_prompts[i] = n_parts
                elif len(n_parts) > 2:
                    raise ValueError(f"Multiple instances of {KBASE} found in negative prompt: {prompt}")

            all_bases_cn, _ = promptsmaker(bases, num_images_per_prompt)
            all_n_bases_cn, _ = promptsmaker(n_bases, num_images_per_prompt)

        all_prompts_cn, all_prompts_p = promptsmaker(prompts, num_images_per_prompt)
        all_n_prompts_cn, _ = promptsmaker(n_prompts, num_images_per_prompt)

        equal = len(all_prompts_cn) == len(all_n_prompts_cn)

        if Compel:
            compel = Compel(tokenizer=self.tokenizer, text_encoder=self.text_encoder)

            def getcompelembs(prps):
                embl = []
                for prp in prps:
                    embl.append(compel.build_conditioning_tensor(prp))
                return torch.cat(embl)

            conds = getcompelembs(all_prompts_cn)
            unconds = getcompelembs(all_n_prompts_cn)
            base_embs = getcompelembs(all_bases_cn) if use_base else None
            base_n_embs = getcompelembs(all_n_bases_cn) if use_base else None
            # When using base, it seems more reasonable to use base prompts as prompt_embeddings rather than regional prompts
            embs = getcompelembs(prompts) if not use_base else base_embs
            n_embs = getcompelembs(n_prompts) if not use_base else base_n_embs

            if use_base and self.base_ratio > 0:
                conds = self.base_ratio * base_embs + (1 - self.base_ratio) * conds
                unconds = self.base_ratio * base_n_embs + (1 - self.base_ratio) * unconds

            prompt = negative_prompt = None
        else:
            conds = self.encode_prompt(prompts, device, 1, True)[0]
            unconds = (
                self.encode_prompt(n_prompts, device, 1, True)[0]
                if equal
                else self.encode_prompt(all_n_prompts_cn, device, 1, True)[0]
            )

            if use_base and self.base_ratio > 0:
                base_embs = self.encode_prompt(bases, device, 1, True)[0]
                base_n_embs = (
                    self.encode_prompt(n_bases, device, 1, True)[0]
                    if equal
                    else self.encode_prompt(all_n_bases_cn, device, 1, True)[0]
                )

                conds = self.base_ratio * base_embs + (1 - self.base_ratio) * conds
                unconds = self.base_ratio * base_n_embs + (1 - self.base_ratio) * unconds

            embs = n_embs = None

        if not active:
            pcallback = None
            mode = None
        else:
            if any(x in rp_args["mode"].upper() for x in ["COL", "ROW"]):
                mode = "COL" if "COL" in rp_args["mode"].upper() else "ROW"
                ocells, icells, regions = make_cells(rp_args["div"])

            elif "PRO" in rp_args["mode"].upper():
                regions = len(all_prompts_p[0])
                mode = "PROMPT"
                reset_attnmaps(self)
                self.ex = "EX" in rp_args["mode"].upper()
                self.target_tokens = target_tokens = tokendealer(self, all_prompts_p)
                thresholds = [float(x) for x in rp_args["th"].split(",")]

            orig_hw = (height, width)
            revers = True

            def pcallback(s_self, step: int, timestep: int, latents: torch.Tensor, selfs=None):
                if "PRO" in mode:  # in Prompt mode, make masks from sum of attention maps
                    self.step = step

                    if len(self.attnmaps_sizes) > 3:
                        self.history[step] = self.attnmaps.copy()
                        for hw in self.attnmaps_sizes:
                            allmasks = []
                            basemasks = [None] * batch
                            for tt, th in zip(target_tokens, thresholds):
                                for b in range(batch):
                                    key = f"{tt}-{b}"
                                    _, mask, _ = makepmask(self, self.attnmaps[key], hw[0], hw[1], th, step)
                                    mask = mask.unsqueeze(0).unsqueeze(-1)
                                    if self.ex:
                                        allmasks[b::batch] = [x - mask for x in allmasks[b::batch]]
                                        allmasks[b::batch] = [torch.where(x > 0, 1, 0) for x in allmasks[b::batch]]
                                    allmasks.append(mask)
                                    basemasks[b] = mask if basemasks[b] is None else basemasks[b] + mask
                            basemasks = [1 - mask for mask in basemasks]
                            basemasks = [torch.where(x > 0, 1, 0) for x in basemasks]
                            allmasks = basemasks + allmasks

                            self.attnmasks[hw] = torch.cat(allmasks)
                        self.maskready = True
                return latents

            def hook_forward(module):
                # diffusers==0.23.2
                def forward(

                    hidden_states: torch.Tensor,

                    encoder_hidden_states: Optional[torch.Tensor] = None,

                    attention_mask: Optional[torch.Tensor] = None,

                    temb: Optional[torch.Tensor] = None,

                    scale: float = 1.0,

                ) -> torch.Tensor:
                    attn = module
                    xshape = hidden_states.shape
                    self.hw = (h, w) = split_dims(xshape[1], *orig_hw)

                    if revers:
                        nx, px = hidden_states.chunk(2)
                    else:
                        px, nx = hidden_states.chunk(2)

                    if equal:
                        hidden_states = torch.cat(
                            [px for i in range(regions)] + [nx for i in range(regions)],
                            0,
                        )
                        encoder_hidden_states = torch.cat([conds] + [unconds])
                    else:
                        hidden_states = torch.cat([px for i in range(regions)] + [nx], 0)
                        encoder_hidden_states = torch.cat([conds] + [unconds])

                    residual = hidden_states

                    if attn.spatial_norm is not None:
                        hidden_states = attn.spatial_norm(hidden_states, temb)

                    input_ndim = hidden_states.ndim

                    if input_ndim == 4:
                        batch_size, channel, height, width = hidden_states.shape
                        hidden_states = hidden_states.view(batch_size, channel, height * width).transpose(1, 2)

                    batch_size, sequence_length, _ = (
                        hidden_states.shape if encoder_hidden_states is None else encoder_hidden_states.shape
                    )

                    if attention_mask is not None:
                        attention_mask = attn.prepare_attention_mask(attention_mask, sequence_length, batch_size)
                        attention_mask = attention_mask.view(batch_size, attn.heads, -1, attention_mask.shape[-1])

                    if attn.group_norm is not None:
                        hidden_states = attn.group_norm(hidden_states.transpose(1, 2)).transpose(1, 2)

                    query = attn.to_q(hidden_states)

                    if encoder_hidden_states is None:
                        encoder_hidden_states = hidden_states
                    elif attn.norm_cross:
                        encoder_hidden_states = attn.norm_encoder_hidden_states(encoder_hidden_states)

                    key = attn.to_k(encoder_hidden_states)
                    value = attn.to_v(encoder_hidden_states)

                    inner_dim = key.shape[-1]
                    head_dim = inner_dim // attn.heads

                    query = query.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

                    key = key.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)
                    value = value.view(batch_size, -1, attn.heads, head_dim).transpose(1, 2)

                    # the output of sdp = (batch, num_heads, seq_len, head_dim)
                    # TODO: add support for attn.scale when we move to Torch 2.1
                    hidden_states = scaled_dot_product_attention(
                        self,
                        query,
                        key,
                        value,
                        attn_mask=attention_mask,
                        dropout_p=0.0,
                        is_causal=False,
                        getattn="PRO" in mode,
                    )

                    hidden_states = hidden_states.transpose(1, 2).reshape(batch_size, -1, attn.heads * head_dim)
                    hidden_states = hidden_states.to(query.dtype)

                    # linear proj
                    hidden_states = attn.to_out[0](hidden_states)
                    # dropout
                    hidden_states = attn.to_out[1](hidden_states)

                    if input_ndim == 4:
                        hidden_states = hidden_states.transpose(-1, -2).reshape(batch_size, channel, height, width)

                    if attn.residual_connection:
                        hidden_states = hidden_states + residual

                    hidden_states = hidden_states / attn.rescale_output_factor

                    #### Regional Prompting Col/Row mode
                    if any(x in mode for x in ["COL", "ROW"]):
                        reshaped = hidden_states.reshape(hidden_states.size()[0], h, w, hidden_states.size()[2])
                        center = reshaped.shape[0] // 2
                        px = reshaped[0:center] if equal else reshaped[0:-batch]
                        nx = reshaped[center:] if equal else reshaped[-batch:]
                        outs = [px, nx] if equal else [px]
                        for out in outs:
                            c = 0
                            for i, ocell in enumerate(ocells):
                                for icell in icells[i]:
                                    if "ROW" in mode:
                                        out[
                                            0:batch,
                                            int(h * ocell[0]) : int(h * ocell[1]),
                                            int(w * icell[0]) : int(w * icell[1]),
                                            :,
                                        ] = out[
                                            c * batch : (c + 1) * batch,
                                            int(h * ocell[0]) : int(h * ocell[1]),
                                            int(w * icell[0]) : int(w * icell[1]),
                                            :,
                                        ]
                                    else:
                                        out[
                                            0:batch,
                                            int(h * icell[0]) : int(h * icell[1]),
                                            int(w * ocell[0]) : int(w * ocell[1]),
                                            :,
                                        ] = out[
                                            c * batch : (c + 1) * batch,
                                            int(h * icell[0]) : int(h * icell[1]),
                                            int(w * ocell[0]) : int(w * ocell[1]),
                                            :,
                                        ]
                                    c += 1
                        px, nx = (px[0:batch], nx[0:batch]) if equal else (px[0:batch], nx)
                        hidden_states = torch.cat([nx, px], 0) if revers else torch.cat([px, nx], 0)
                        hidden_states = hidden_states.reshape(xshape)

                    #### Regional Prompting Prompt mode
                    elif "PRO" in mode:
                        px, nx = (
                            torch.chunk(hidden_states) if equal else hidden_states[0:-batch],
                            hidden_states[-batch:],
                        )

                        if (h, w) in self.attnmasks and self.maskready:

                            def mask(input):
                                out = torch.multiply(input, self.attnmasks[(h, w)])
                                for b in range(batch):
                                    for r in range(1, regions):
                                        out[b] = out[b] + out[r * batch + b]
                                return out

                            px, nx = (mask(px), mask(nx)) if equal else (mask(px), nx)
                        px, nx = (px[0:batch], nx[0:batch]) if equal else (px[0:batch], nx)
                        hidden_states = torch.cat([nx, px], 0) if revers else torch.cat([px, nx], 0)
                    return hidden_states

                return forward

            def hook_forwards(root_module: torch.nn.Module):
                for name, module in root_module.named_modules():
                    if "attn2" in name and module.__class__.__name__ == "Attention":
                        module.forward = hook_forward(module)

            hook_forwards(self.unet)

        output = self.stable_diffusion_call(
            prompt=prompt,
            prompt_embeds=embs,
            negative_prompt=negative_prompt,
            negative_prompt_embeds=n_embs,
            height=height,
            width=width,
            num_inference_steps=num_inference_steps,
            guidance_scale=guidance_scale,
            num_images_per_prompt=num_images_per_prompt,
            eta=eta,
            generator=generator,
            latents=latents,
            output_type=output_type,
            return_dict=return_dict,
            callback_on_step_end=pcallback,
        )

        if "save_mask" in rp_args:
            save_mask = rp_args["save_mask"]
        else:
            save_mask = False

        if mode == "PROMPT" and save_mask:
            saveattnmaps(
                self,
                output,
                height,
                width,
                thresholds,
                num_inference_steps // 2,
                regions,
            )

        return output

    # copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion
    def prepare_extra_step_kwargs(self, generator, eta):
        # prepare extra kwargs for the scheduler step, since not all schedulers have the same signature
        # eta (η) is only used with the DDIMScheduler, it will be ignored for other schedulers.
        # eta corresponds to η in DDIM paper: https://arxiv.org/abs/2010.02502
        # and should be between [0, 1]

        accepts_eta = "eta" in set(inspect.signature(self.scheduler.step).parameters.keys())
        extra_step_kwargs = {}
        if accepts_eta:
            extra_step_kwargs["eta"] = eta

        # check if the scheduler accepts generator
        accepts_generator = "generator" in set(inspect.signature(self.scheduler.step).parameters.keys())
        if accepts_generator:
            extra_step_kwargs["generator"] = generator
        return extra_step_kwargs

    # copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion
    def prepare_latents(self, batch_size, num_channels_latents, height, width, dtype, device, generator, latents=None):
        shape = (
            batch_size,
            num_channels_latents,
            int(height) // self.vae_scale_factor,
            int(width) // self.vae_scale_factor,
        )
        if isinstance(generator, list) and len(generator) != batch_size:
            raise ValueError(
                f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
                f" size of {batch_size}. Make sure the batch size matches the length of the generators."
            )

        if latents is None:
            latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
        else:
            latents = latents.to(device)

        # scale the initial noise by the standard deviation required by the scheduler
        latents = latents * self.scheduler.init_noise_sigma
        return latents

    # copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion
    def encode_prompt(

        self,

        prompt,

        device,

        num_images_per_prompt,

        do_classifier_free_guidance,

        negative_prompt=None,

        prompt_embeds: Optional[torch.Tensor] = None,

        negative_prompt_embeds: Optional[torch.Tensor] = None,

        lora_scale: Optional[float] = None,

        clip_skip: Optional[int] = None,

    ):
        r"""

        Encodes the prompt into text encoder hidden states.



        Args:

            prompt (`str` or `List[str]`, *optional*):

                prompt to be encoded

            device: (`torch.device`):

                torch device

            num_images_per_prompt (`int`):

                number of images that should be generated per prompt

            do_classifier_free_guidance (`bool`):

                whether to use classifier free guidance or not

            negative_prompt (`str` or `List[str]`, *optional*):

                The prompt or prompts not to guide the image generation. If not defined, one has to pass

                `negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is

                less than `1`).

            prompt_embeds (`torch.Tensor`, *optional*):

                Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not

                provided, text embeddings will be generated from `prompt` input argument.

            negative_prompt_embeds (`torch.Tensor`, *optional*):

                Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt

                weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input

                argument.

            lora_scale (`float`, *optional*):

                A LoRA scale that will be applied to all LoRA layers of the text encoder if LoRA layers are loaded.

            clip_skip (`int`, *optional*):

                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that

                the output of the pre-final layer will be used for computing the prompt embeddings.

        """
        # set lora scale so that monkey patched LoRA
        # function of text encoder can correctly access it
        if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
            self._lora_scale = lora_scale

            # dynamically adjust the LoRA scale
            if not USE_PEFT_BACKEND:
                adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)
            else:
                scale_lora_layers(self.text_encoder, lora_scale)

        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        if prompt_embeds is None:
            # textual inversion: process multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                prompt = self.maybe_convert_prompt(prompt, self.tokenizer)

            text_inputs = self.tokenizer(
                prompt,
                padding="max_length",
                max_length=self.tokenizer.model_max_length,
                truncation=True,
                return_tensors="pt",
            )
            text_input_ids = text_inputs.input_ids
            untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

            if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(
                text_input_ids, untruncated_ids
            ):
                removed_text = self.tokenizer.batch_decode(
                    untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1]
                )
                logger.warning(
                    "The following part of your input was truncated because CLIP can only handle sequences up to"
                    f" {self.tokenizer.model_max_length} tokens: {removed_text}"
                )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = text_inputs.attention_mask.to(device)
            else:
                attention_mask = None

            if clip_skip is None:
                prompt_embeds = self.text_encoder(text_input_ids.to(device), attention_mask=attention_mask)
                prompt_embeds = prompt_embeds[0]
            else:
                prompt_embeds = self.text_encoder(
                    text_input_ids.to(device), attention_mask=attention_mask, output_hidden_states=True
                )
                # Access the `hidden_states` first, that contains a tuple of
                # all the hidden states from the encoder layers. Then index into
                # the tuple to access the hidden states from the desired layer.
                prompt_embeds = prompt_embeds[-1][-(clip_skip + 1)]
                # We also need to apply the final LayerNorm here to not mess with the
                # representations. The `last_hidden_states` that we typically use for
                # obtaining the final prompt representations passes through the LayerNorm
                # layer.
                prompt_embeds = self.text_encoder.text_model.final_layer_norm(prompt_embeds)

        if self.text_encoder is not None:
            prompt_embeds_dtype = self.text_encoder.dtype
        elif self.unet is not None:
            prompt_embeds_dtype = self.unet.dtype
        else:
            prompt_embeds_dtype = prompt_embeds.dtype

        prompt_embeds = prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)

        bs_embed, seq_len, _ = prompt_embeds.shape
        # duplicate text embeddings for each generation per prompt, using mps friendly method
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""] * batch_size
            elif prompt is not None and type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

            # textual inversion: process multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)

            max_length = prompt_embeds.shape[1]
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="pt",
            )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = uncond_input.attention_mask.to(device)
            else:
                attention_mask = None

            negative_prompt_embeds = self.text_encoder(
                uncond_input.input_ids.to(device),
                attention_mask=attention_mask,
            )
            negative_prompt_embeds = negative_prompt_embeds[0]

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt, using mps friendly method
            seq_len = negative_prompt_embeds.shape[1]

            negative_prompt_embeds = negative_prompt_embeds.to(dtype=prompt_embeds_dtype, device=device)

            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

        if self.text_encoder is not None:
            if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
                # Retrieve the original scale by scaling back the LoRA layers
                unscale_lora_layers(self.text_encoder, lora_scale)

        return prompt_embeds, negative_prompt_embeds

    # copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion
    def check_inputs(

        self,

        prompt,

        height,

        width,

        callback_steps,

        negative_prompt=None,

        prompt_embeds=None,

        negative_prompt_embeds=None,

        ip_adapter_image=None,

        ip_adapter_image_embeds=None,

        callback_on_step_end_tensor_inputs=None,

    ):
        if height % 8 != 0 or width % 8 != 0:
            raise ValueError(f"`height` and `width` have to be divisible by 8 but are {height} and {width}.")

        if callback_steps is not None and (not isinstance(callback_steps, int) or callback_steps <= 0):
            raise ValueError(
                f"`callback_steps` has to be a positive integer but is {callback_steps} of type"
                f" {type(callback_steps)}."
            )
        if callback_on_step_end_tensor_inputs is not None and not all(
            k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
        ):
            raise ValueError(
                f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
            )

        if prompt is not None and prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
                " only forward one of the two."
            )
        elif prompt is None and prompt_embeds is None:
            raise ValueError(
                "Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
            )
        elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
            raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")

        if negative_prompt is not None and negative_prompt_embeds is not None:
            raise ValueError(
                f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`:"
                f" {negative_prompt_embeds}. Please make sure to only forward one of the two."
            )

        if prompt_embeds is not None and negative_prompt_embeds is not None:
            if prompt_embeds.shape != negative_prompt_embeds.shape:
                raise ValueError(
                    "`prompt_embeds` and `negative_prompt_embeds` must have the same shape when passed directly, but"
                    f" got: `prompt_embeds` {prompt_embeds.shape} != `negative_prompt_embeds`"
                    f" {negative_prompt_embeds.shape}."
                )

        if ip_adapter_image is not None and ip_adapter_image_embeds is not None:
            raise ValueError(
                "Provide either `ip_adapter_image` or `ip_adapter_image_embeds`. Cannot leave both `ip_adapter_image` and `ip_adapter_image_embeds` defined."
            )

        if ip_adapter_image_embeds is not None:
            if not isinstance(ip_adapter_image_embeds, list):
                raise ValueError(
                    f"`ip_adapter_image_embeds` has to be of type `list` but is {type(ip_adapter_image_embeds)}"
                )
            elif ip_adapter_image_embeds[0].ndim not in [3, 4]:
                raise ValueError(
                    f"`ip_adapter_image_embeds` has to be a list of 3D or 4D tensors but is {ip_adapter_image_embeds[0].ndim}D"
                )

    # copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion
    @torch.no_grad()
    def stable_diffusion_call(

        self,

        prompt: Union[str, List[str]] = None,

        height: Optional[int] = None,

        width: Optional[int] = None,

        num_inference_steps: int = 50,

        timesteps: List[int] = None,

        sigmas: List[float] = None,

        guidance_scale: float = 7.5,

        negative_prompt: Optional[Union[str, List[str]]] = None,

        num_images_per_prompt: Optional[int] = 1,

        eta: float = 0.0,

        generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,

        latents: Optional[torch.Tensor] = None,

        prompt_embeds: Optional[torch.Tensor] = None,

        negative_prompt_embeds: Optional[torch.Tensor] = None,

        ip_adapter_image: Optional[PipelineImageInput] = None,

        ip_adapter_image_embeds: Optional[List[torch.Tensor]] = None,

        output_type: Optional[str] = "pil",

        return_dict: bool = True,

        cross_attention_kwargs: Optional[Dict[str, Any]] = None,

        guidance_rescale: float = 0.0,

        clip_skip: Optional[int] = None,

        callback_on_step_end: Optional[

            Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]

        ] = None,

        callback_on_step_end_tensor_inputs: List[str] = ["latents"],

        **kwargs,

    ):
        r"""

        The call function to the pipeline for generation.



        Args:

            prompt (`str` or `List[str]`, *optional*):

                The prompt or prompts to guide image generation. If not defined, you need to pass `prompt_embeds`.

            height (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):

                The height in pixels of the generated image.

            width (`int`, *optional*, defaults to `self.unet.config.sample_size * self.vae_scale_factor`):

                The width in pixels of the generated image.

            num_inference_steps (`int`, *optional*, defaults to 50):

                The number of denoising steps. More denoising steps usually lead to a higher quality image at the

                expense of slower inference.

            timesteps (`List[int]`, *optional*):

                Custom timesteps to use for the denoising process with schedulers which support a `timesteps` argument

                in their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is

                passed will be used. Must be in descending order.

            sigmas (`List[float]`, *optional*):

                Custom sigmas to use for the denoising process with schedulers which support a `sigmas` argument in

                their `set_timesteps` method. If not defined, the default behavior when `num_inference_steps` is passed

                will be used.

            guidance_scale (`float`, *optional*, defaults to 7.5):

                A higher guidance scale value encourages the model to generate images closely linked to the text

                `prompt` at the expense of lower image quality. Guidance scale is enabled when `guidance_scale > 1`.

            negative_prompt (`str` or `List[str]`, *optional*):

                The prompt or prompts to guide what to not include in image generation. If not defined, you need to

                pass `negative_prompt_embeds` instead. Ignored when not using guidance (`guidance_scale < 1`).

            num_images_per_prompt (`int`, *optional*, defaults to 1):

                The number of images to generate per prompt.

            eta (`float`, *optional*, defaults to 0.0):

                Corresponds to parameter eta (η) from the [DDIM](https://arxiv.org/abs/2010.02502) paper. Only applies

                to the [`~schedulers.DDIMScheduler`], and is ignored in other schedulers.

            generator (`torch.Generator` or `List[torch.Generator]`, *optional*):

                A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make

                generation deterministic.

            latents (`torch.Tensor`, *optional*):

                Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image

                generation. Can be used to tweak the same generation with different prompts. If not provided, a latents

                tensor is generated by sampling using the supplied random `generator`.

            prompt_embeds (`torch.Tensor`, *optional*):

                Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not

                provided, text embeddings are generated from the `prompt` input argument.

            negative_prompt_embeds (`torch.Tensor`, *optional*):

                Pre-generated negative text embeddings. Can be used to easily tweak text inputs (prompt weighting). If

                not provided, `negative_prompt_embeds` are generated from the `negative_prompt` input argument.

            ip_adapter_image: (`PipelineImageInput`, *optional*): Optional image input to work with IP Adapters.

            ip_adapter_image_embeds (`List[torch.Tensor]`, *optional*):

                Pre-generated image embeddings for IP-Adapter. It should be a list of length same as number of

                IP-adapters. Each element should be a tensor of shape `(batch_size, num_images, emb_dim)`. It should

                contain the negative image embedding if `do_classifier_free_guidance` is set to `True`. If not

                provided, embeddings are computed from the `ip_adapter_image` input argument.

            output_type (`str`, *optional*, defaults to `"pil"`):

                The output format of the generated image. Choose between `PIL.Image` or `np.array`.

            return_dict (`bool`, *optional*, defaults to `True`):

                Whether or not to return a [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] instead of a

                plain tuple.

            cross_attention_kwargs (`dict`, *optional*):

                A kwargs dictionary that if specified is passed along to the [`AttentionProcessor`] as defined in

                [`self.processor`](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).

            guidance_rescale (`float`, *optional*, defaults to 0.0):

                Guidance rescale factor from [Common Diffusion Noise Schedules and Sample Steps are

                Flawed](https://arxiv.org/pdf/2305.08891.pdf). Guidance rescale factor should fix overexposure when

                using zero terminal SNR.

            clip_skip (`int`, *optional*):

                Number of layers to be skipped from CLIP while computing the prompt embeddings. A value of 1 means that

                the output of the pre-final layer will be used for computing the prompt embeddings.

            callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):

                A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of

                each denoising step during the inference. with the following arguments: `callback_on_step_end(self:

                DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a

                list of all tensors as specified by `callback_on_step_end_tensor_inputs`.

            callback_on_step_end_tensor_inputs (`List`, *optional*):

                The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list

                will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the

                `._callback_tensor_inputs` attribute of your pipeline class.



        Examples:



        Returns:

            [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] or `tuple`:

                If `return_dict` is `True`, [`~pipelines.stable_diffusion.StableDiffusionPipelineOutput`] is returned,

                otherwise a `tuple` is returned where the first element is a list with the generated images and the

                second element is a list of `bool`s indicating whether the corresponding generated image contains

                "not-safe-for-work" (nsfw) content.

        """

        callback = kwargs.pop("callback", None)
        callback_steps = kwargs.pop("callback_steps", None)
        self.model_cpu_offload_seq = "text_encoder->image_encoder->unet->vae"
        self._optional_components = ["safety_checker", "feature_extractor", "image_encoder"]
        self._exclude_from_cpu_offload = ["safety_checker"]
        self._callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]

        if callback is not None:
            deprecate(
                "callback",
                "1.0.0",
                "Passing `callback` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
            )
        if callback_steps is not None:
            deprecate(
                "callback_steps",
                "1.0.0",
                "Passing `callback_steps` as an input argument to `__call__` is deprecated, consider using `callback_on_step_end`",
            )

        if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
            callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs

        # 0. Default height and width to unet
        if not height or not width:
            height = (
                self.unet.config.sample_size
                if self._is_unet_config_sample_size_int
                else self.unet.config.sample_size[0]
            )
            width = (
                self.unet.config.sample_size
                if self._is_unet_config_sample_size_int
                else self.unet.config.sample_size[1]
            )
            height, width = height * self.vae_scale_factor, width * self.vae_scale_factor
        # to deal with lora scaling and other possible forward hooks

        # 1. Check inputs. Raise error if not correct
        self.check_inputs(
            prompt,
            height,
            width,
            callback_steps,
            negative_prompt,
            prompt_embeds,
            negative_prompt_embeds,
            ip_adapter_image,
            ip_adapter_image_embeds,
            callback_on_step_end_tensor_inputs,
        )

        self._guidance_scale = guidance_scale
        self._guidance_rescale = guidance_rescale
        self._clip_skip = clip_skip
        self._cross_attention_kwargs = cross_attention_kwargs
        self._interrupt = False

        # 2. Define call parameters
        if prompt is not None and isinstance(prompt, str):
            batch_size = 1
        elif prompt is not None and isinstance(prompt, list):
            batch_size = len(prompt)
        else:
            batch_size = prompt_embeds.shape[0]

        device = self._execution_device

        # 3. Encode input prompt
        lora_scale = (
            self.cross_attention_kwargs.get("scale", None) if self.cross_attention_kwargs is not None else None
        )

        prompt_embeds, negative_prompt_embeds = self.encode_prompt(
            prompt,
            device,
            num_images_per_prompt,
            self.do_classifier_free_guidance,
            negative_prompt,
            prompt_embeds=prompt_embeds,
            negative_prompt_embeds=negative_prompt_embeds,
            lora_scale=lora_scale,
            clip_skip=self.clip_skip,
        )

        # For classifier free guidance, we need to do two forward passes.
        # Here we concatenate the unconditional and text embeddings into a single batch
        # to avoid doing two forward passes
        if self.do_classifier_free_guidance:
            prompt_embeds = torch.cat([negative_prompt_embeds, prompt_embeds])

        if ip_adapter_image is not None or ip_adapter_image_embeds is not None:
            image_embeds = self.prepare_ip_adapter_image_embeds(
                ip_adapter_image,
                ip_adapter_image_embeds,
                device,
                batch_size * num_images_per_prompt,
                self.do_classifier_free_guidance,
            )

        # 4. Prepare timesteps
        timesteps, num_inference_steps = retrieve_timesteps(
            self.scheduler, num_inference_steps, device, timesteps, sigmas
        )

        # 5. Prepare latent variables
        num_channels_latents = self.unet.config.in_channels
        latents = self.prepare_latents(
            batch_size * num_images_per_prompt,
            num_channels_latents,
            height,
            width,
            prompt_embeds.dtype,
            device,
            generator,
            latents,
        )

        # 6. Prepare extra step kwargs. TODO: Logic should ideally just be moved out of the pipeline
        extra_step_kwargs = self.prepare_extra_step_kwargs(generator, eta)

        # 6.1 Add image embeds for IP-Adapter
        added_cond_kwargs = (
            {"image_embeds": image_embeds}
            if (ip_adapter_image is not None or ip_adapter_image_embeds is not None)
            else None
        )

        # 6.2 Optionally get Guidance Scale Embedding
        timestep_cond = None
        if self.unet.config.time_cond_proj_dim is not None:
            guidance_scale_tensor = torch.tensor(self.guidance_scale - 1).repeat(batch_size * num_images_per_prompt)
            timestep_cond = self.get_guidance_scale_embedding(
                guidance_scale_tensor, embedding_dim=self.unet.config.time_cond_proj_dim
            ).to(device=device, dtype=latents.dtype)

        # 7. Denoising loop
        num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
        self._num_timesteps = len(timesteps)
        with self.progress_bar(total=num_inference_steps) as progress_bar:
            for i, t in enumerate(timesteps):
                if self.interrupt:
                    continue

                # expand the latents if we are doing classifier free guidance
                latent_model_input = torch.cat([latents] * 2) if self.do_classifier_free_guidance else latents
                latent_model_input = self.scheduler.scale_model_input(latent_model_input, t)

                # predict the noise residual
                noise_pred = self.unet(
                    latent_model_input,
                    t,
                    encoder_hidden_states=prompt_embeds,
                    timestep_cond=timestep_cond,
                    cross_attention_kwargs=self.cross_attention_kwargs,
                    added_cond_kwargs=added_cond_kwargs,
                    return_dict=False,
                )[0]

                # perform guidance
                if self.do_classifier_free_guidance:
                    noise_pred_uncond, noise_pred_text = noise_pred.chunk(2)
                    noise_pred = noise_pred_uncond + self.guidance_scale * (noise_pred_text - noise_pred_uncond)

                if self.do_classifier_free_guidance and self.guidance_rescale > 0.0:
                    # Based on 3.4. in https://arxiv.org/pdf/2305.08891.pdf
                    noise_pred = rescale_noise_cfg(noise_pred, noise_pred_text, guidance_rescale=self.guidance_rescale)

                # compute the previous noisy sample x_t -> x_t-1
                latents = self.scheduler.step(noise_pred, t, latents, **extra_step_kwargs, return_dict=False)[0]

                if callback_on_step_end is not None:
                    callback_kwargs = {}
                    for k in callback_on_step_end_tensor_inputs:
                        callback_kwargs[k] = locals()[k]
                    callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)

                    latents = callback_outputs.pop("latents", latents)
                    prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
                    negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)

                # call the callback, if provided
                if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
                    progress_bar.update()
                    if callback is not None and i % callback_steps == 0:
                        step_idx = i // getattr(self.scheduler, "order", 1)
                        callback(step_idx, t, latents)

                if XLA_AVAILABLE:
                    xm.mark_step()

        if not output_type == "latent":
            image = self.vae.decode(latents / self.vae.config.scaling_factor, return_dict=False, generator=generator)[
                0
            ]
            image, has_nsfw_concept = self.run_safety_checker(image, device, prompt_embeds.dtype)
        else:
            image = latents
            has_nsfw_concept = None

        if has_nsfw_concept is None:
            do_denormalize = [True] * image.shape[0]
        else:
            do_denormalize = [not has_nsfw for has_nsfw in has_nsfw_concept]
        image = self.image_processor.postprocess(image, output_type=output_type, do_denormalize=do_denormalize)

        # Offload all models
        self.maybe_free_model_hooks()

        if not return_dict:
            return (image, has_nsfw_concept)

        return StableDiffusionPipelineOutput(images=image, nsfw_content_detected=has_nsfw_concept)

    # copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion
    def _encode_prompt(

        self,

        prompt,

        device,

        num_images_per_prompt,

        do_classifier_free_guidance,

        negative_prompt=None,

        prompt_embeds: Optional[torch.Tensor] = None,

        negative_prompt_embeds: Optional[torch.Tensor] = None,

        lora_scale: Optional[float] = None,

        **kwargs,

    ):
        r"""Encodes the prompt into text encoder hidden states."""
        batch_size = len(prompt) if isinstance(prompt, list) else 1

        # get prompt text embeddings
        text_inputs = self.tokenizer(
            prompt,
            padding="max_length",
            max_length=self.tokenizer.model_max_length,
            truncation=True,
            return_tensors="pt",
        )
        text_input_ids = text_inputs.input_ids
        untruncated_ids = self.tokenizer(prompt, padding="longest", return_tensors="pt").input_ids

        if untruncated_ids.shape[-1] >= text_input_ids.shape[-1] and not torch.equal(text_input_ids, untruncated_ids):
            removed_text = self.tokenizer.batch_decode(untruncated_ids[:, self.tokenizer.model_max_length - 1 : -1])
            logger.warning(
                "The following part of your input was truncated because CLIP can only handle sequences up to"
                f" {self.tokenizer.model_max_length} tokens: {removed_text}"
            )

        if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
            attention_mask = text_inputs.attention_mask.to(device)
        else:
            attention_mask = None

        if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
            # cast text_encoder.dtype to prevent overflow when using bf16
            text_input_ids = text_input_ids.to(device=device, dtype=self.text_encoder.dtype)
            prompt_embeds = self.text_encoder(
                text_input_ids,
                attention_mask=attention_mask,
            )
            prompt_embeds = prompt_embeds[0]
        else:
            text_encoder_lora_scale = None
            if lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
                text_encoder_lora_scale = lora_scale
            if text_encoder_lora_scale is not None and isinstance(self, StableDiffusionLoraLoaderMixin):
                # dynamically adjust the LoRA scale
                adjust_lora_scale_text_encoder(self.text_encoder, lora_scale)

            prompt_embeds = self.text_encoder(
                text_input_ids.to(device),
                attention_mask=attention_mask,
            )
            prompt_embeds = prompt_embeds[0]

        # duplicate text embeddings for each generation per prompt
        bs_embed, seq_len, _ = prompt_embeds.shape
        prompt_embeds = prompt_embeds.repeat(1, num_images_per_prompt, 1)
        prompt_embeds = prompt_embeds.view(bs_embed * num_images_per_prompt, seq_len, -1)

        # get unconditional embeddings for classifier free guidance
        if do_classifier_free_guidance and negative_prompt_embeds is None:
            uncond_tokens: List[str]
            if negative_prompt is None:
                uncond_tokens = [""]
            elif type(prompt) is not type(negative_prompt):
                raise TypeError(
                    f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
                    f" {type(prompt)}."
                )
            elif isinstance(negative_prompt, str):
                uncond_tokens = [negative_prompt]
            elif batch_size != len(negative_prompt):
                raise ValueError(
                    f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
                    f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
                    " the batch size of `prompt`."
                )
            else:
                uncond_tokens = negative_prompt

            # textual inversion: process multi-vector tokens if necessary
            if isinstance(self, TextualInversionLoaderMixin):
                uncond_tokens = self.maybe_convert_prompt(uncond_tokens, self.tokenizer)

            max_length = prompt_embeds.shape[1]
            uncond_input = self.tokenizer(
                uncond_tokens,
                padding="max_length",
                max_length=max_length,
                truncation=True,
                return_tensors="pt",
            )

            if hasattr(self.text_encoder.config, "use_attention_mask") and self.text_encoder.config.use_attention_mask:
                attention_mask = uncond_input.attention_mask.to(device)
            else:
                attention_mask = None

            negative_prompt_embeds = self.text_encoder(
                uncond_input.input_ids.to(device),
                attention_mask=attention_mask,
            )
            negative_prompt_embeds = negative_prompt_embeds[0]

        if do_classifier_free_guidance:
            # duplicate unconditional embeddings for each generation per prompt
            seq_len = negative_prompt_embeds.shape[1]

            negative_prompt_embeds = negative_prompt_embeds.repeat(1, num_images_per_prompt, 1)
            negative_prompt_embeds = negative_prompt_embeds.view(batch_size * num_images_per_prompt, seq_len, -1)

        if isinstance(self, StableDiffusionLoraLoaderMixin) and USE_PEFT_BACKEND:
            # Unscale LoRA weights to avoid overfitting. This is a hack
            unscale_lora_layers(self.text_encoder, lora_scale)

        return prompt_embeds, negative_prompt_embeds

    def encode_image(self, image, device, num_images_per_prompt, output_hidden_states=None):
        """Encodes the image into image encoder hidden states."""
        dtype = next(self.image_encoder.parameters()).dtype

        if not isinstance(image, torch.Tensor):
            image = self.feature_extractor(image, return_tensors="pt").pixel_values

        image = image.to(device=device, dtype=dtype)
        if output_hidden_states:
            image_enc_hidden_states = self.image_encoder(image, output_hidden_states=True).hidden_states[-2]
            image_enc_hidden_states = image_enc_hidden_states.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_enc_hidden_states = self.image_encoder(
                torch.zeros_like(image), output_hidden_states=True
            ).hidden_states[-2]
            uncond_image_enc_hidden_states = uncond_image_enc_hidden_states.repeat_interleave(
                num_images_per_prompt, dim=0
            )
            return image_enc_hidden_states, uncond_image_enc_hidden_states
        else:
            image_embeds = self.image_encoder(image).image_embeds
            image_embeds = image_embeds.repeat_interleave(num_images_per_prompt, dim=0)
            uncond_image_embeds = torch.zeros_like(image_embeds)

            return image_embeds, uncond_image_embeds

    def prepare_ip_adapter_image_embeds(

        self, ip_adapter_image, ip_adapter_image_embeds, device, num_images_per_prompt, do_classifier_free_guidance

    ):
        """Prepares and processes IP-Adapter image embeddings."""
        image_embeds = []
        if do_classifier_free_guidance:
            negative_image_embeds = []
        if ip_adapter_image_embeds is None:
            for image in ip_adapter_image:
                if not isinstance(image, torch.Tensor):
                    image = self.image_processor.preprocess(image)
                    image = image.to(device=device)
                if len(image.shape) == 3:
                    image = image.unsqueeze(0)
                image_emb, neg_image_emb = self.encode_image(image, device, num_images_per_prompt, True)
                image_embeds.append(image_emb)
                if do_classifier_free_guidance:
                    negative_image_embeds.append(neg_image_emb)

            if len(image_embeds) == 1:
                image_embeds = image_embeds[0]
                if do_classifier_free_guidance:
                    negative_image_embeds = negative_image_embeds[0]
            else:
                image_embeds = torch.cat(image_embeds, dim=0)
                if do_classifier_free_guidance:
                    negative_image_embeds = torch.cat(negative_image_embeds, dim=0)
        else:
            repeat_dim = 2 if do_classifier_free_guidance else 1
            image_embeds = ip_adapter_image_embeds.repeat_interleave(repeat_dim, dim=0)
            if do_classifier_free_guidance:
                negative_image_embeds = torch.zeros_like(image_embeds)

        if do_classifier_free_guidance:
            image_embeds = torch.cat([negative_image_embeds, image_embeds])

        return image_embeds

    def run_safety_checker(self, image, device, dtype):
        """Runs the safety checker on the generated image."""
        if self.safety_checker is None:
            has_nsfw_concept = None
            return image, has_nsfw_concept

        if isinstance(self.safety_checker, StableDiffusionSafetyChecker):
            safety_checker_input = self.feature_extractor(self.numpy_to_pil(image), return_tensors="pt").to(device)
            image, has_nsfw_concept = self.safety_checker(
                images=image,
                clip_input=safety_checker_input.pixel_values.to(dtype),
            )
        else:
            images_np = self.numpy_to_pil(image)
            safety_checker_input = self.safety_checker.feature_extractor(images_np, return_tensors="pt").to(device)
            has_nsfw_concept = self.safety_checker(
                images=image,
                clip_input=safety_checker_input.pixel_values.to(dtype),
            )[1]

        return image, has_nsfw_concept

    # copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion
    def decode_latents(self, latents):
        """Decodes the latents to images."""
        latents = 1 / self.vae.config.scaling_factor * latents
        image = self.vae.decode(latents, return_dict=False)[0]
        image = (image / 2 + 0.5).clamp(0, 1)
        # we always cast to float32 as this does not cause significant overhead and is compatible with bfloat16
        image = image.cpu().permute(0, 2, 3, 1).float().numpy()
        return image

    @property
    def guidance_scale(self):
        return self._guidance_scale

    @property
    def guidance_rescale(self):
        return self._guidance_rescale

    # copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion
    def get_guidance_scale_embedding(

        self, w: torch.Tensor, embedding_dim: int = 512, dtype: torch.dtype = torch.float32

    ):
        """Gets the guidance scale embedding for classifier free guidance conditioning.

        See https://github.com/google-research/vdm/blob/dc27b98a554f65cdc654b800da5aa1846545d41b/model_vdm.py#L298



        Args:

            w (`torch.Tensor`):

                The guidance scale tensor used for classifier free guidance conditioning.

            embedding_dim (`int`, defaults to 512):

                The dimensionality of the guidance scale embedding.

            dtype (`torch.dtype`, defaults to torch.float32):

                The dtype of the embedding.



        Returns:

            `torch.Tensor`: Embedding vectors with shape `(len(w), embedding_dim)`.

        """
        assert len(w.shape) == 1
        w = w * 1000.0

        half_dim = embedding_dim // 2
        emb = torch.log(torch.tensor(10000.0)) / (half_dim - 1)
        emb = torch.exp(torch.arange(half_dim, dtype=dtype) * -emb)
        emb = w.to(dtype)[:, None] * emb[None, :]
        emb = torch.cat([torch.sin(emb), torch.cos(emb)], dim=1)
        if embedding_dim % 2 == 1:  # zero pad
            emb = torch.nn.functional.pad(emb, (0, 1))
        assert emb.shape == (w.shape[0], embedding_dim)
        return emb

    @property
    def clip_skip(self):
        return self._clip_skip

    @property
    def num_timesteps(self):
        return self._num_timesteps

    @property
    def interrupt(self):
        return self._interrupt

    @property
    def cross_attention_kwargs(self):
        return self._cross_attention_kwargs

    @property
    def do_classifier_free_guidance(self):
        return self._guidance_scale > 1 and self.unet.config.time_cond_proj_dim is None


### Make prompt list for each regions
def promptsmaker(prompts, batch):
    out_p = []
    plen = len(prompts)
    for prompt in prompts:
        add = ""
        if KCOMM in prompt:
            add, prompt = prompt.split(KCOMM)
            add = add.strip() + " "
        prompts = [p.strip() for p in prompt.split(KBRK)]
        out_p.append([add + p for i, p in enumerate(prompts)])
    out = [None] * batch * len(out_p[0]) * len(out_p)
    for p, prs in enumerate(out_p):  # inputs prompts
        for r, pr in enumerate(prs):  # prompts for regions
            start = (p + r * plen) * batch
            out[start : start + batch] = [pr] * batch  # P1R1B1,P1R1B2...,P1R2B1,P1R2B2...,P2R1B1...
    return out, out_p


### make regions from ratios
### ";" makes outercells, "," makes inner cells
def make_cells(ratios):
    if ";" not in ratios and "," in ratios:
        ratios = ratios.replace(",", ";")
    ratios = ratios.split(";")
    ratios = [inratios.split(",") for inratios in ratios]

    icells = []
    ocells = []

    def startend(cells, array):
        current_start = 0
        array = [float(x) for x in array]
        for value in array:
            end = current_start + (value / sum(array))
            cells.append([current_start, end])
            current_start = end

    startend(ocells, [r[0] for r in ratios])

    for inratios in ratios:
        if 2 > len(inratios):
            icells.append([[0, 1]])
        else:
            add = []
            startend(add, inratios[1:])
            icells.append(add)
    return ocells, icells, sum(len(cell) for cell in icells)


def make_emblist(self, prompts):
    with torch.no_grad():
        tokens = self.tokenizer(
            prompts,
            max_length=self.tokenizer.model_max_length,
            padding=True,
            truncation=True,
            return_tensors="pt",
        ).input_ids.to(self.device)
        embs = self.text_encoder(tokens, output_hidden_states=True).last_hidden_state.to(self.device, dtype=self.dtype)
    return embs


def split_dims(xs, height, width):
    def repeat_div(x, y):
        while y > 0:
            x = math.ceil(x / 2)
            y = y - 1
        return x

    scale = math.ceil(math.log2(math.sqrt(height * width / xs)))
    dsh = repeat_div(height, scale)
    dsw = repeat_div(width, scale)
    return dsh, dsw


##### for prompt mode
def get_attn_maps(self, attn):
    height, width = self.hw
    target_tokens = self.target_tokens
    if (height, width) not in self.attnmaps_sizes:
        self.attnmaps_sizes.append((height, width))

    for b in range(self.batch):
        for t in target_tokens:
            power = self.power
            add = attn[b, :, :, t[0] : t[0] + len(t)] ** (power) * (self.attnmaps_sizes.index((height, width)) + 1)
            add = torch.sum(add, dim=2)
            key = f"{t}-{b}"
            if key not in self.attnmaps:
                self.attnmaps[key] = add
            else:
                if self.attnmaps[key].shape[1] != add.shape[1]:
                    add = add.view(8, height, width)
                    add = FF.resize(add, self.attnmaps_sizes[0], antialias=None)
                    add = add.reshape_as(self.attnmaps[key])

                self.attnmaps[key] = self.attnmaps[key] + add


def reset_attnmaps(self):  # init parameters in every batch
    self.step = 0
    self.attnmaps = {}  # made from attention maps
    self.attnmaps_sizes = []  # height,width set of u-net blocks
    self.attnmasks = {}  # made from attnmaps for regions
    self.maskready = False
    self.history = {}


def saveattnmaps(self, output, h, w, th, step, regions):
    masks = []
    for i, mask in enumerate(self.history[step].values()):
        img, _, mask = makepmask(self, mask, h, w, th[i % len(th)], step)
        if self.ex:
            masks = [x - mask for x in masks]
            masks.append(mask)
            if len(masks) == regions - 1:
                output.images.extend([FF.to_pil_image(mask) for mask in masks])
                masks = []
        else:
            output.images.append(img)


def makepmask(

    self, mask, h, w, th, step

):  # make masks from attention cache return [for preview, for attention, for Latent]
    th = th - step * 0.005
    if 0.05 >= th:
        th = 0.05
    mask = torch.mean(mask, dim=0)
    mask = mask / mask.max().item()
    mask = torch.where(mask > th, 1, 0)
    mask = mask.float()
    mask = mask.view(1, *self.attnmaps_sizes[0])
    img = FF.to_pil_image(mask)
    img = img.resize((w, h))
    mask = FF.resize(mask, (h, w), interpolation=FF.InterpolationMode.NEAREST, antialias=None)
    lmask = mask
    mask = mask.reshape(h * w)
    mask = torch.where(mask > 0.1, 1, 0)
    return img, mask, lmask


def tokendealer(self, all_prompts):
    for prompts in all_prompts:
        targets = [p.split(",")[-1] for p in prompts[1:]]
        tt = []

        for target in targets:
            ptokens = (
                self.tokenizer(
                    prompts,
                    max_length=self.tokenizer.model_max_length,
                    padding=True,
                    truncation=True,
                    return_tensors="pt",
                ).input_ids
            )[0]
            ttokens = (
                self.tokenizer(
                    target,
                    max_length=self.tokenizer.model_max_length,
                    padding=True,
                    truncation=True,
                    return_tensors="pt",
                ).input_ids
            )[0]

            tlist = []

            for t in range(ttokens.shape[0] - 2):
                for p in range(ptokens.shape[0]):
                    if ttokens[t + 1] == ptokens[p]:
                        tlist.append(p)
            if tlist != []:
                tt.append(tlist)

    return tt


def scaled_dot_product_attention(

    self,

    query,

    key,

    value,

    attn_mask=None,

    dropout_p=0.0,

    is_causal=False,

    scale=None,

    getattn=False,

) -> torch.Tensor:
    # Efficient implementation equivalent to the following:
    L, S = query.size(-2), key.size(-2)
    scale_factor = 1 / math.sqrt(query.size(-1)) if scale is None else scale
    attn_bias = torch.zeros(L, S, dtype=query.dtype, device=self.device)
    if is_causal:
        assert attn_mask is None
        temp_mask = torch.ones(L, S, dtype=torch.bool).tril(diagonal=0)
        attn_bias.masked_fill_(temp_mask.logical_not(), float("-inf"))
        attn_bias.to(query.dtype)

    if attn_mask is not None:
        if attn_mask.dtype == torch.bool:
            attn_mask.masked_fill_(attn_mask.logical_not(), float("-inf"))
        else:
            attn_bias += attn_mask
    attn_weight = query @ key.transpose(-2, -1) * scale_factor
    attn_weight += attn_bias
    attn_weight = torch.softmax(attn_weight, dim=-1)
    if getattn:
        get_attn_maps(self, attn_weight)
    attn_weight = torch.dropout(attn_weight, dropout_p, train=True)
    return attn_weight @ value


def retrieve_timesteps(

    scheduler,

    num_inference_steps: Optional[int] = None,

    device: Optional[Union[str, torch.device]] = None,

    timesteps: Optional[List[int]] = None,

    sigmas: Optional[List[float]] = None,

    **kwargs,

):
    r"""

    Calls the scheduler's `set_timesteps` method and retrieves timesteps from the scheduler after the call. Handles

    custom timesteps. Any kwargs will be supplied to `scheduler.set_timesteps`.



    Args:

        scheduler (`SchedulerMixin`):

            The scheduler to get timesteps from.

        num_inference_steps (`int`):

            The number of diffusion steps used when generating samples with a pre-trained model. If used, `timesteps`

            must be `None`.

        device (`str` or `torch.device`, *optional*):

            The device to which the timesteps should be moved to. If `None`, the timesteps are not moved.

        timesteps (`List[int]`, *optional*):

            Custom timesteps used to override the timestep spacing strategy of the scheduler. If `timesteps` is passed,

            `num_inference_steps` and `sigmas` must be `None`.

        sigmas (`List[float]`, *optional*):

            Custom sigmas used to override the timestep spacing strategy of the scheduler. If `sigmas` is passed,

            `num_inference_steps` and `timesteps` must be `None`.



    Returns:

        `Tuple[torch.Tensor, int]`: A tuple where the first element is the timestep schedule from the scheduler and the

        second element is the number of inference steps.

    """
    if timesteps is not None and sigmas is not None:
        raise ValueError("Only one of `timesteps` or `sigmas` can be passed. Please choose one to set custom values")
    if timesteps is not None:
        accepts_timesteps = "timesteps" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accepts_timesteps:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" timestep schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(timesteps=timesteps, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    elif sigmas is not None:
        accept_sigmas = "sigmas" in set(inspect.signature(scheduler.set_timesteps).parameters.keys())
        if not accept_sigmas:
            raise ValueError(
                f"The current scheduler class {scheduler.__class__}'s `set_timesteps` does not support custom"
                f" sigmas schedules. Please check whether you are using the correct scheduler."
            )
        scheduler.set_timesteps(sigmas=sigmas, device=device, **kwargs)
        timesteps = scheduler.timesteps
        num_inference_steps = len(timesteps)
    else:
        scheduler.set_timesteps(num_inference_steps, device=device, **kwargs)
        timesteps = scheduler.timesteps
    return timesteps, num_inference_steps


def rescale_noise_cfg(noise_cfg, noise_pred_text, guidance_rescale=0.0):
    r"""

    Rescales `noise_cfg` tensor based on `guidance_rescale` to improve image quality and fix overexposure. Based on

    Section 3.4 from [Common Diffusion Noise Schedules and Sample Steps are

    Flawed](https://arxiv.org/pdf/2305.08891.pdf).



    Args:

        noise_cfg (`torch.Tensor`):

            The predicted noise tensor for the guided diffusion process.

        noise_pred_text (`torch.Tensor`):

            The predicted noise tensor for the text-guided diffusion process.

        guidance_rescale (`float`, *optional*, defaults to 0.0):

            A rescale factor applied to the noise predictions.



    Returns:

        noise_cfg (`torch.Tensor`): The rescaled noise prediction tensor.

    """
    std_text = noise_pred_text.std(dim=list(range(1, noise_pred_text.ndim)), keepdim=True)
    std_cfg = noise_cfg.std(dim=list(range(1, noise_cfg.ndim)), keepdim=True)
    # rescale the results from guidance (fixes overexposure)
    noise_pred_rescaled = noise_cfg * (std_text / std_cfg)
    # mix with the original results from guidance by factor guidance_rescale to avoid "plain looking" images
    noise_cfg = guidance_rescale * noise_pred_rescaled + (1 - guidance_rescale) * noise_cfg
    return noise_cfg