File size: 12,073 Bytes
22a452a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
import random
import tempfile
import unittest

import numpy as np
import torch
from PIL import Image
from transformers import AutoTokenizer, CLIPTextConfig, CLIPTextModel, CLIPTokenizer, T5EncoderModel

import diffusers
from diffusers import (
    AutoencoderKL,
    FlowMatchEulerDiscreteScheduler,
    FluxTransformer2DModel,
    VisualClozeGenerationPipeline,
)
from diffusers.utils import logging
from diffusers.utils.testing_utils import (
    CaptureLogger,
    enable_full_determinism,
    floats_tensor,
    require_accelerator,
    torch_device,
)

from ..test_pipelines_common import PipelineTesterMixin, to_np


enable_full_determinism()


class VisualClozeGenerationPipelineFastTests(unittest.TestCase, PipelineTesterMixin):
    pipeline_class = VisualClozeGenerationPipeline
    params = frozenset(
        [
            "task_prompt",
            "content_prompt",
            "guidance_scale",
            "prompt_embeds",
            "pooled_prompt_embeds",
        ]
    )
    batch_params = frozenset(["task_prompt", "content_prompt", "image"])
    test_xformers_attention = False
    test_layerwise_casting = True
    test_group_offloading = True

    supports_dduf = False

    def get_dummy_components(self):
        torch.manual_seed(0)
        transformer = FluxTransformer2DModel(
            patch_size=1,
            in_channels=12,
            out_channels=4,
            num_layers=1,
            num_single_layers=1,
            attention_head_dim=6,
            num_attention_heads=2,
            joint_attention_dim=32,
            pooled_projection_dim=32,
            axes_dims_rope=[2, 2, 2],
        )
        clip_text_encoder_config = CLIPTextConfig(
            bos_token_id=0,
            eos_token_id=2,
            hidden_size=32,
            intermediate_size=37,
            layer_norm_eps=1e-05,
            num_attention_heads=4,
            num_hidden_layers=5,
            pad_token_id=1,
            vocab_size=1000,
            hidden_act="gelu",
            projection_dim=32,
        )

        torch.manual_seed(0)
        text_encoder = CLIPTextModel(clip_text_encoder_config)

        torch.manual_seed(0)
        text_encoder_2 = T5EncoderModel.from_pretrained("hf-internal-testing/tiny-random-t5")

        tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
        tokenizer_2 = AutoTokenizer.from_pretrained("hf-internal-testing/tiny-random-t5")

        torch.manual_seed(0)
        vae = AutoencoderKL(
            sample_size=32,
            in_channels=3,
            out_channels=3,
            block_out_channels=(4,),
            layers_per_block=1,
            latent_channels=1,
            norm_num_groups=1,
            use_quant_conv=False,
            use_post_quant_conv=False,
            shift_factor=0.0609,
            scaling_factor=1.5035,
        )

        scheduler = FlowMatchEulerDiscreteScheduler()

        return {
            "scheduler": scheduler,
            "text_encoder": text_encoder,
            "text_encoder_2": text_encoder_2,
            "tokenizer": tokenizer,
            "tokenizer_2": tokenizer_2,
            "transformer": transformer,
            "vae": vae,
            "resolution": 32,
        }

    def get_dummy_inputs(self, device, seed=0):
        # Create example images to simulate the input format required by VisualCloze
        context_image = [
            Image.fromarray(floats_tensor((32, 32, 3), rng=random.Random(seed), scale=255).numpy().astype(np.uint8))
            for _ in range(2)
        ]
        query_image = [
            Image.fromarray(
                floats_tensor((32, 32, 3), rng=random.Random(seed + 1), scale=255).numpy().astype(np.uint8)
            ),
            None,
        ]

        # Create an image list that conforms to the VisualCloze input format
        image = [
            context_image,  # In-Context example
            query_image,  # Query image
        ]

        if str(device).startswith("mps"):
            generator = torch.manual_seed(seed)
        else:
            generator = torch.Generator(device="cpu").manual_seed(seed)

        inputs = {
            "task_prompt": "Each row outlines a logical process, starting from [IMAGE1] gray-based depth map with detailed object contours, to achieve [IMAGE2] an image with flawless clarity.",
            "content_prompt": "A beautiful landscape with mountains and a lake",
            "image": image,
            "generator": generator,
            "num_inference_steps": 2,
            "guidance_scale": 5.0,
            "max_sequence_length": 77,
            "output_type": "np",
        }
        return inputs

    def test_visualcloze_different_prompts(self):
        pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)

        inputs = self.get_dummy_inputs(torch_device)
        output_same_prompt = pipe(**inputs).images[0]

        inputs = self.get_dummy_inputs(torch_device)
        inputs["task_prompt"] = "A different task to perform."
        output_different_prompts = pipe(**inputs).images[0]

        max_diff = np.abs(output_same_prompt - output_different_prompts).max()

        # Outputs should be different
        assert max_diff > 1e-6

    def test_inference_batch_single_identical(self):
        self._test_inference_batch_single_identical(expected_max_diff=1e-3)

    def test_different_task_prompts(self, expected_min_diff=1e-1):
        pipe = self.pipeline_class(**self.get_dummy_components()).to(torch_device)
        inputs = self.get_dummy_inputs(torch_device)

        output_original = pipe(**inputs).images[0]

        inputs["task_prompt"] = "A different task description for image generation"
        output_different_task = pipe(**inputs).images[0]

        # Different task prompts should produce different outputs
        max_diff = np.abs(output_original - output_different_task).max()
        assert max_diff > expected_min_diff

    def test_save_load_local(self, expected_max_difference=5e-4):
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()

        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs)[0]

        logger = logging.get_logger("diffusers.pipelines.pipeline_utils")
        logger.setLevel(diffusers.logging.INFO)

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir, safe_serialization=False)

            with CaptureLogger(logger) as cap_logger:
                # NOTE: Resolution must be set to 32 for loading otherwise will lead to OOM on CI hardware
                # This attribute is not serialized in the config of the pipeline
                pipe_loaded = self.pipeline_class.from_pretrained(tmpdir, resolution=32)

            for component in pipe_loaded.components.values():
                if hasattr(component, "set_default_attn_processor"):
                    component.set_default_attn_processor()

            for name in pipe_loaded.components.keys():
                if name not in pipe_loaded._optional_components:
                    assert name in str(cap_logger)

            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output_loaded = pipe_loaded(**inputs)[0]

        max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
        self.assertLess(max_diff, expected_max_difference)

    def test_save_load_optional_components(self, expected_max_difference=1e-4):
        if not hasattr(self.pipeline_class, "_optional_components"):
            return
        components = self.get_dummy_components()
        pipe = self.pipeline_class(**components)
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        # set all optional components to None
        for optional_component in pipe._optional_components:
            setattr(pipe, optional_component, None)

        generator_device = "cpu"
        inputs = self.get_dummy_inputs(generator_device)
        torch.manual_seed(0)
        output = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir, safe_serialization=False)
            # NOTE: Resolution must be set to 32 for loading otherwise will lead to OOM on CI hardware
            # This attribute is not serialized in the config of the pipeline
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir, resolution=32)
            for component in pipe_loaded.components.values():
                if hasattr(component, "set_default_attn_processor"):
                    component.set_default_attn_processor()
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        for optional_component in pipe._optional_components:
            self.assertTrue(
                getattr(pipe_loaded, optional_component) is None,
                f"`{optional_component}` did not stay set to None after loading.",
            )

        inputs = self.get_dummy_inputs(generator_device)
        torch.manual_seed(0)
        output_loaded = pipe_loaded(**inputs)[0]

        max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
        self.assertLess(max_diff, expected_max_difference)

    @unittest.skipIf(torch_device not in ["cuda", "xpu"], reason="float16 requires CUDA or XPU")
    @require_accelerator
    def test_save_load_float16(self, expected_max_diff=1e-2):
        components = self.get_dummy_components()
        for name, module in components.items():
            if hasattr(module, "half"):
                components[name] = module.to(torch_device).half()

        pipe = self.pipeline_class(**components)
        for component in pipe.components.values():
            if hasattr(component, "set_default_attn_processor"):
                component.set_default_attn_processor()
        pipe.to(torch_device)
        pipe.set_progress_bar_config(disable=None)

        inputs = self.get_dummy_inputs(torch_device)
        output = pipe(**inputs)[0]

        with tempfile.TemporaryDirectory() as tmpdir:
            pipe.save_pretrained(tmpdir)
            # NOTE: Resolution must be set to 32 for loading otherwise will lead to OOM on CI hardware
            # This attribute is not serialized in the config of the pipeline
            pipe_loaded = self.pipeline_class.from_pretrained(tmpdir, torch_dtype=torch.float16, resolution=32)
            for component in pipe_loaded.components.values():
                if hasattr(component, "set_default_attn_processor"):
                    component.set_default_attn_processor()
            pipe_loaded.to(torch_device)
            pipe_loaded.set_progress_bar_config(disable=None)

        for name, component in pipe_loaded.components.items():
            if hasattr(component, "dtype"):
                self.assertTrue(
                    component.dtype == torch.float16,
                    f"`{name}.dtype` switched from `float16` to {component.dtype} after loading.",
                )

        inputs = self.get_dummy_inputs(torch_device)
        output_loaded = pipe_loaded(**inputs)[0]
        max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
        self.assertLess(
            max_diff, expected_max_diff, "The output of the fp16 pipeline changed after saving and loading."
        )

    @unittest.skip("Skipped due to missing layout_prompt. Needs further investigation.")
    def test_encode_prompt_works_in_isolation(self, extra_required_param_value_dict=None, atol=0.0001, rtol=0.0001):
        pass