Spaces:
Runtime error
Runtime error
File size: 45,963 Bytes
22a452a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 |
# Copyright 2025 The Wan Team and The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import html
from typing import Any, Callable, Dict, List, Optional, Union
import PIL.Image
import regex as re
import torch
from transformers import AutoTokenizer, UMT5EncoderModel
from ...callbacks import MultiPipelineCallbacks, PipelineCallback
from ...image_processor import PipelineImageInput
from ...loaders import WanLoraLoaderMixin
from ...models import AutoencoderKLWan, WanVACETransformer3DModel
from ...schedulers import FlowMatchEulerDiscreteScheduler
from ...utils import is_ftfy_available, is_torch_xla_available, logging, replace_example_docstring
from ...utils.torch_utils import randn_tensor
from ...video_processor import VideoProcessor
from ..pipeline_utils import DiffusionPipeline
from .pipeline_output import WanPipelineOutput
if is_torch_xla_available():
import torch_xla.core.xla_model as xm
XLA_AVAILABLE = True
else:
XLA_AVAILABLE = False
logger = logging.get_logger(__name__) # pylint: disable=invalid-name
if is_ftfy_available():
import ftfy
EXAMPLE_DOC_STRING = """
Examples:
```python
>>> import torch
>>> import PIL.Image
>>> from diffusers import AutoencoderKLWan, WanVACEPipeline
>>> from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
>>> from diffusers.utils import export_to_video, load_image
def prepare_video_and_mask(first_img: PIL.Image.Image, last_img: PIL.Image.Image, height: int, width: int, num_frames: int):
first_img = first_img.resize((width, height))
last_img = last_img.resize((width, height))
frames = []
frames.append(first_img)
# Ideally, this should be 127.5 to match original code, but they perform computation on numpy arrays
# whereas we are passing PIL images. If you choose to pass numpy arrays, you can set it to 127.5 to
# match the original code.
frames.extend([PIL.Image.new("RGB", (width, height), (128, 128, 128))] * (num_frames - 2))
frames.append(last_img)
mask_black = PIL.Image.new("L", (width, height), 0)
mask_white = PIL.Image.new("L", (width, height), 255)
mask = [mask_black, *[mask_white] * (num_frames - 2), mask_black]
return frames, mask
>>> # Available checkpoints: Wan-AI/Wan2.1-VACE-1.3B-diffusers, Wan-AI/Wan2.1-VACE-14B-diffusers
>>> model_id = "Wan-AI/Wan2.1-VACE-1.3B-diffusers"
>>> vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
>>> pipe = WanVACEPipeline.from_pretrained(model_id, vae=vae, torch_dtype=torch.bfloat16)
>>> flow_shift = 3.0 # 5.0 for 720P, 3.0 for 480P
>>> pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config, flow_shift=flow_shift)
>>> pipe.to("cuda")
>>> prompt = "CG animation style, a small blue bird takes off from the ground, flapping its wings. The bird's feathers are delicate, with a unique pattern on its chest. The background shows a blue sky with white clouds under bright sunshine. The camera follows the bird upward, capturing its flight and the vastness of the sky from a close-up, low-angle perspective."
>>> negative_prompt = "Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality, low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured, misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards"
>>> first_frame = load_image(
... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/flf2v_input_first_frame.png"
... )
>>> last_frame = load_image(
... "https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/flf2v_input_last_frame.png>>> "
... )
>>> height = 512
>>> width = 512
>>> num_frames = 81
>>> video, mask = prepare_video_and_mask(first_frame, last_frame, height, width, num_frames)
>>> output = pipe(
... video=video,
... mask=mask,
... prompt=prompt,
... negative_prompt=negative_prompt,
... height=height,
... width=width,
... num_frames=num_frames,
... num_inference_steps=30,
... guidance_scale=5.0,
... generator=torch.Generator().manual_seed(42),
... ).frames[0]
>>> export_to_video(output, "output.mp4", fps=16)
```
"""
def basic_clean(text):
text = ftfy.fix_text(text)
text = html.unescape(html.unescape(text))
return text.strip()
def whitespace_clean(text):
text = re.sub(r"\s+", " ", text)
text = text.strip()
return text
def prompt_clean(text):
text = whitespace_clean(basic_clean(text))
return text
# Copied from diffusers.pipelines.stable_diffusion.pipeline_stable_diffusion_img2img.retrieve_latents
def retrieve_latents(
encoder_output: torch.Tensor, generator: Optional[torch.Generator] = None, sample_mode: str = "sample"
):
if hasattr(encoder_output, "latent_dist") and sample_mode == "sample":
return encoder_output.latent_dist.sample(generator)
elif hasattr(encoder_output, "latent_dist") and sample_mode == "argmax":
return encoder_output.latent_dist.mode()
elif hasattr(encoder_output, "latents"):
return encoder_output.latents
else:
raise AttributeError("Could not access latents of provided encoder_output")
class WanVACEPipeline(DiffusionPipeline, WanLoraLoaderMixin):
r"""
Pipeline for controllable generation using Wan.
This model inherits from [`DiffusionPipeline`]. Check the superclass documentation for the generic methods
implemented for all pipelines (downloading, saving, running on a particular device, etc.).
Args:
tokenizer ([`T5Tokenizer`]):
Tokenizer from [T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5Tokenizer),
specifically the [google/umt5-xxl](https://huggingface.co/google/umt5-xxl) variant.
text_encoder ([`T5EncoderModel`]):
[T5](https://huggingface.co/docs/transformers/en/model_doc/t5#transformers.T5EncoderModel), specifically
the [google/umt5-xxl](https://huggingface.co/google/umt5-xxl) variant.
transformer ([`WanTransformer3DModel`]):
Conditional Transformer to denoise the input latents.
scheduler ([`UniPCMultistepScheduler`]):
A scheduler to be used in combination with `transformer` to denoise the encoded image latents.
vae ([`AutoencoderKLWan`]):
Variational Auto-Encoder (VAE) Model to encode and decode videos to and from latent representations.
"""
model_cpu_offload_seq = "text_encoder->transformer->vae"
_callback_tensor_inputs = ["latents", "prompt_embeds", "negative_prompt_embeds"]
def __init__(
self,
tokenizer: AutoTokenizer,
text_encoder: UMT5EncoderModel,
transformer: WanVACETransformer3DModel,
vae: AutoencoderKLWan,
scheduler: FlowMatchEulerDiscreteScheduler,
):
super().__init__()
self.register_modules(
vae=vae,
text_encoder=text_encoder,
tokenizer=tokenizer,
transformer=transformer,
scheduler=scheduler,
)
self.vae_scale_factor_temporal = 2 ** sum(self.vae.temperal_downsample) if getattr(self, "vae", None) else 4
self.vae_scale_factor_spatial = 2 ** len(self.vae.temperal_downsample) if getattr(self, "vae", None) else 8
self.video_processor = VideoProcessor(vae_scale_factor=self.vae_scale_factor_spatial)
# Copied from diffusers.pipelines.wan.pipeline_wan.WanPipeline._get_t5_prompt_embeds
def _get_t5_prompt_embeds(
self,
prompt: Union[str, List[str]] = None,
num_videos_per_prompt: int = 1,
max_sequence_length: int = 226,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
device = device or self._execution_device
dtype = dtype or self.text_encoder.dtype
prompt = [prompt] if isinstance(prompt, str) else prompt
prompt = [prompt_clean(u) for u in prompt]
batch_size = len(prompt)
text_inputs = self.tokenizer(
prompt,
padding="max_length",
max_length=max_sequence_length,
truncation=True,
add_special_tokens=True,
return_attention_mask=True,
return_tensors="pt",
)
text_input_ids, mask = text_inputs.input_ids, text_inputs.attention_mask
seq_lens = mask.gt(0).sum(dim=1).long()
prompt_embeds = self.text_encoder(text_input_ids.to(device), mask.to(device)).last_hidden_state
prompt_embeds = prompt_embeds.to(dtype=dtype, device=device)
prompt_embeds = [u[:v] for u, v in zip(prompt_embeds, seq_lens)]
prompt_embeds = torch.stack(
[torch.cat([u, u.new_zeros(max_sequence_length - u.size(0), u.size(1))]) for u in prompt_embeds], dim=0
)
# duplicate text embeddings for each generation per prompt, using mps friendly method
_, seq_len, _ = prompt_embeds.shape
prompt_embeds = prompt_embeds.repeat(1, num_videos_per_prompt, 1)
prompt_embeds = prompt_embeds.view(batch_size * num_videos_per_prompt, seq_len, -1)
return prompt_embeds
# Copied from diffusers.pipelines.wan.pipeline_wan.WanPipeline.encode_prompt
def encode_prompt(
self,
prompt: Union[str, List[str]],
negative_prompt: Optional[Union[str, List[str]]] = None,
do_classifier_free_guidance: bool = True,
num_videos_per_prompt: int = 1,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
max_sequence_length: int = 226,
device: Optional[torch.device] = None,
dtype: Optional[torch.dtype] = None,
):
r"""
Encodes the prompt into text encoder hidden states.
Args:
prompt (`str` or `List[str]`, *optional*):
prompt to be encoded
negative_prompt (`str` or `List[str]`, *optional*):
The prompt or prompts not to guide the image generation. If not defined, one has to pass
`negative_prompt_embeds` instead. Ignored when not using guidance (i.e., ignored if `guidance_scale` is
less than `1`).
do_classifier_free_guidance (`bool`, *optional*, defaults to `True`):
Whether to use classifier free guidance or not.
num_videos_per_prompt (`int`, *optional*, defaults to 1):
Number of videos that should be generated per prompt. torch device to place the resulting embeddings on
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt weighting. If not
provided, text embeddings will be generated from `prompt` input argument.
negative_prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated negative text embeddings. Can be used to easily tweak text inputs, *e.g.* prompt
weighting. If not provided, negative_prompt_embeds will be generated from `negative_prompt` input
argument.
device: (`torch.device`, *optional*):
torch device
dtype: (`torch.dtype`, *optional*):
torch dtype
"""
device = device or self._execution_device
prompt = [prompt] if isinstance(prompt, str) else prompt
if prompt is not None:
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
if prompt_embeds is None:
prompt_embeds = self._get_t5_prompt_embeds(
prompt=prompt,
num_videos_per_prompt=num_videos_per_prompt,
max_sequence_length=max_sequence_length,
device=device,
dtype=dtype,
)
if do_classifier_free_guidance and negative_prompt_embeds is None:
negative_prompt = negative_prompt or ""
negative_prompt = batch_size * [negative_prompt] if isinstance(negative_prompt, str) else negative_prompt
if prompt is not None and type(prompt) is not type(negative_prompt):
raise TypeError(
f"`negative_prompt` should be the same type to `prompt`, but got {type(negative_prompt)} !="
f" {type(prompt)}."
)
elif batch_size != len(negative_prompt):
raise ValueError(
f"`negative_prompt`: {negative_prompt} has batch size {len(negative_prompt)}, but `prompt`:"
f" {prompt} has batch size {batch_size}. Please make sure that passed `negative_prompt` matches"
" the batch size of `prompt`."
)
negative_prompt_embeds = self._get_t5_prompt_embeds(
prompt=negative_prompt,
num_videos_per_prompt=num_videos_per_prompt,
max_sequence_length=max_sequence_length,
device=device,
dtype=dtype,
)
return prompt_embeds, negative_prompt_embeds
def check_inputs(
self,
prompt,
negative_prompt,
height,
width,
prompt_embeds=None,
negative_prompt_embeds=None,
callback_on_step_end_tensor_inputs=None,
video=None,
mask=None,
reference_images=None,
):
base = self.vae_scale_factor_spatial * self.transformer.config.patch_size[1]
if height % base != 0 or width % base != 0:
raise ValueError(f"`height` and `width` have to be divisible by {base} but are {height} and {width}.")
if callback_on_step_end_tensor_inputs is not None and not all(
k in self._callback_tensor_inputs for k in callback_on_step_end_tensor_inputs
):
raise ValueError(
f"`callback_on_step_end_tensor_inputs` has to be in {self._callback_tensor_inputs}, but found {[k for k in callback_on_step_end_tensor_inputs if k not in self._callback_tensor_inputs]}"
)
if prompt is not None and prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `prompt`: {prompt} and `prompt_embeds`: {prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif negative_prompt is not None and negative_prompt_embeds is not None:
raise ValueError(
f"Cannot forward both `negative_prompt`: {negative_prompt} and `negative_prompt_embeds`: {negative_prompt_embeds}. Please make sure to"
" only forward one of the two."
)
elif prompt is None and prompt_embeds is None:
raise ValueError(
"Provide either `prompt` or `prompt_embeds`. Cannot leave both `prompt` and `prompt_embeds` undefined."
)
elif prompt is not None and (not isinstance(prompt, str) and not isinstance(prompt, list)):
raise ValueError(f"`prompt` has to be of type `str` or `list` but is {type(prompt)}")
elif negative_prompt is not None and (
not isinstance(negative_prompt, str) and not isinstance(negative_prompt, list)
):
raise ValueError(f"`negative_prompt` has to be of type `str` or `list` but is {type(negative_prompt)}")
if video is not None:
if mask is not None:
if len(video) != len(mask):
raise ValueError(
f"Length of `video` {len(video)} and `mask` {len(mask)} do not match. Please make sure that"
" they have the same length."
)
if reference_images is not None:
is_pil_image = isinstance(reference_images, PIL.Image.Image)
is_list_of_pil_images = isinstance(reference_images, list) and all(
isinstance(ref_img, PIL.Image.Image) for ref_img in reference_images
)
is_list_of_list_of_pil_images = isinstance(reference_images, list) and all(
isinstance(ref_img, list) and all(isinstance(ref_img_, PIL.Image.Image) for ref_img_ in ref_img)
for ref_img in reference_images
)
if not (is_pil_image or is_list_of_pil_images or is_list_of_list_of_pil_images):
raise ValueError(
"`reference_images` has to be of type `PIL.Image.Image` or `list` of `PIL.Image.Image`, or "
"`list` of `list` of `PIL.Image.Image`, but is {type(reference_images)}"
)
if is_list_of_list_of_pil_images and len(reference_images) != 1:
raise ValueError(
"The pipeline only supports generating one video at a time at the moment. When passing a list "
"of list of reference images, where the outer list corresponds to the batch size and the inner "
"list corresponds to list of conditioning images per video, please make sure to only pass "
"one inner list of reference images (i.e., `[[<image1>, <image2>, ...]]`"
)
elif mask is not None:
raise ValueError("`mask` can only be passed if `video` is passed as well.")
def preprocess_conditions(
self,
video: Optional[List[PipelineImageInput]] = None,
mask: Optional[List[PipelineImageInput]] = None,
reference_images: Optional[Union[PIL.Image.Image, List[PIL.Image.Image], List[List[PIL.Image.Image]]]] = None,
batch_size: int = 1,
height: int = 480,
width: int = 832,
num_frames: int = 81,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
):
if video is not None:
base = self.vae_scale_factor_spatial * self.transformer.config.patch_size[1]
video_height, video_width = self.video_processor.get_default_height_width(video[0])
if video_height * video_width > height * width:
scale = min(width / video_width, height / video_height)
video_height, video_width = int(video_height * scale), int(video_width * scale)
if video_height % base != 0 or video_width % base != 0:
logger.warning(
f"Video height and width should be divisible by {base}, but got {video_height} and {video_width}. "
)
video_height = (video_height // base) * base
video_width = (video_width // base) * base
assert video_height * video_width <= height * width
video = self.video_processor.preprocess_video(video, video_height, video_width)
image_size = (video_height, video_width) # Use the height/width of video (with possible rescaling)
else:
video = torch.zeros(batch_size, 3, num_frames, height, width, dtype=dtype, device=device)
image_size = (height, width) # Use the height/width provider by user
if mask is not None:
mask = self.video_processor.preprocess_video(mask, image_size[0], image_size[1])
mask = torch.clamp((mask + 1) / 2, min=0, max=1)
else:
mask = torch.ones_like(video)
video = video.to(dtype=dtype, device=device)
mask = mask.to(dtype=dtype, device=device)
# Make a list of list of images where the outer list corresponds to video batch size and the inner list
# corresponds to list of conditioning images per video
if reference_images is None or isinstance(reference_images, PIL.Image.Image):
reference_images = [[reference_images] for _ in range(video.shape[0])]
elif isinstance(reference_images, (list, tuple)) and isinstance(next(iter(reference_images)), PIL.Image.Image):
reference_images = [reference_images]
elif (
isinstance(reference_images, (list, tuple))
and isinstance(next(iter(reference_images)), list)
and isinstance(next(iter(reference_images[0])), PIL.Image.Image)
):
reference_images = reference_images
else:
raise ValueError(
"`reference_images` has to be of type `PIL.Image.Image` or `list` of `PIL.Image.Image`, or "
"`list` of `list` of `PIL.Image.Image`, but is {type(reference_images)}"
)
if video.shape[0] != len(reference_images):
raise ValueError(
f"Batch size of `video` {video.shape[0]} and length of `reference_images` {len(reference_images)} does not match."
)
ref_images_lengths = [len(reference_images_batch) for reference_images_batch in reference_images]
if any(l != ref_images_lengths[0] for l in ref_images_lengths):
raise ValueError(
f"All batches of `reference_images` should have the same length, but got {ref_images_lengths}. Support for this "
"may be added in the future."
)
reference_images_preprocessed = []
for i, reference_images_batch in enumerate(reference_images):
preprocessed_images = []
for j, image in enumerate(reference_images_batch):
if image is None:
continue
image = self.video_processor.preprocess(image, None, None)
img_height, img_width = image.shape[-2:]
scale = min(image_size[0] / img_height, image_size[1] / img_width)
new_height, new_width = int(img_height * scale), int(img_width * scale)
resized_image = torch.nn.functional.interpolate(
image, size=(new_height, new_width), mode="bilinear", align_corners=False
).squeeze(0) # [C, H, W]
top = (image_size[0] - new_height) // 2
left = (image_size[1] - new_width) // 2
canvas = torch.ones(3, *image_size, device=device, dtype=dtype)
canvas[:, top : top + new_height, left : left + new_width] = resized_image
preprocessed_images.append(canvas)
reference_images_preprocessed.append(preprocessed_images)
return video, mask, reference_images_preprocessed
def prepare_video_latents(
self,
video: torch.Tensor,
mask: torch.Tensor,
reference_images: Optional[List[List[torch.Tensor]]] = None,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
device: Optional[torch.device] = None,
) -> torch.Tensor:
device = device or self._execution_device
if isinstance(generator, list):
# TODO: support this
raise ValueError("Passing a list of generators is not yet supported. This may be supported in the future.")
if reference_images is None:
# For each batch of video, we set no re
# ference image (as one or more can be passed by user)
reference_images = [[None] for _ in range(video.shape[0])]
else:
if video.shape[0] != len(reference_images):
raise ValueError(
f"Batch size of `video` {video.shape[0]} and length of `reference_images` {len(reference_images)} does not match."
)
if video.shape[0] != 1:
# TODO: support this
raise ValueError(
"Generating with more than one video is not yet supported. This may be supported in the future."
)
vae_dtype = self.vae.dtype
video = video.to(dtype=vae_dtype)
latents_mean = torch.tensor(self.vae.config.latents_mean, device=device, dtype=torch.float32).view(
1, self.vae.config.z_dim, 1, 1, 1
)
latents_std = 1.0 / torch.tensor(self.vae.config.latents_std, device=device, dtype=torch.float32).view(
1, self.vae.config.z_dim, 1, 1, 1
)
if mask is None:
latents = retrieve_latents(self.vae.encode(video), generator, sample_mode="argmax").unbind(0)
latents = ((latents.float() - latents_mean) * latents_std).to(vae_dtype)
else:
mask = mask.to(dtype=vae_dtype)
mask = torch.where(mask > 0.5, 1.0, 0.0)
inactive = video * (1 - mask)
reactive = video * mask
inactive = retrieve_latents(self.vae.encode(inactive), generator, sample_mode="argmax")
reactive = retrieve_latents(self.vae.encode(reactive), generator, sample_mode="argmax")
inactive = ((inactive.float() - latents_mean) * latents_std).to(vae_dtype)
reactive = ((reactive.float() - latents_mean) * latents_std).to(vae_dtype)
latents = torch.cat([inactive, reactive], dim=1)
latent_list = []
for latent, reference_images_batch in zip(latents, reference_images):
for reference_image in reference_images_batch:
assert reference_image.ndim == 3
reference_image = reference_image.to(dtype=vae_dtype)
reference_image = reference_image[None, :, None, :, :] # [1, C, 1, H, W]
reference_latent = retrieve_latents(self.vae.encode(reference_image), generator, sample_mode="argmax")
reference_latent = ((reference_latent.float() - latents_mean) * latents_std).to(vae_dtype)
reference_latent = reference_latent.squeeze(0) # [C, 1, H, W]
reference_latent = torch.cat([reference_latent, torch.zeros_like(reference_latent)], dim=0)
latent = torch.cat([reference_latent.squeeze(0), latent], dim=1)
latent_list.append(latent)
return torch.stack(latent_list)
def prepare_masks(
self,
mask: torch.Tensor,
reference_images: Optional[List[torch.Tensor]] = None,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
) -> torch.Tensor:
if isinstance(generator, list):
# TODO: support this
raise ValueError("Passing a list of generators is not yet supported. This may be supported in the future.")
if reference_images is None:
# For each batch of video, we set no reference image (as one or more can be passed by user)
reference_images = [[None] for _ in range(mask.shape[0])]
else:
if mask.shape[0] != len(reference_images):
raise ValueError(
f"Batch size of `mask` {mask.shape[0]} and length of `reference_images` {len(reference_images)} does not match."
)
if mask.shape[0] != 1:
# TODO: support this
raise ValueError(
"Generating with more than one video is not yet supported. This may be supported in the future."
)
transformer_patch_size = self.transformer.config.patch_size[1]
mask_list = []
for mask_, reference_images_batch in zip(mask, reference_images):
num_channels, num_frames, height, width = mask_.shape
new_num_frames = (num_frames + self.vae_scale_factor_temporal - 1) // self.vae_scale_factor_temporal
new_height = height // (self.vae_scale_factor_spatial * transformer_patch_size) * transformer_patch_size
new_width = width // (self.vae_scale_factor_spatial * transformer_patch_size) * transformer_patch_size
mask_ = mask_[0, :, :, :]
mask_ = mask_.view(
num_frames, new_height, self.vae_scale_factor_spatial, new_width, self.vae_scale_factor_spatial
)
mask_ = mask_.permute(2, 4, 0, 1, 3).flatten(0, 1) # [8x8, num_frames, new_height, new_width]
mask_ = torch.nn.functional.interpolate(
mask_.unsqueeze(0), size=(new_num_frames, new_height, new_width), mode="nearest-exact"
).squeeze(0)
num_ref_images = len(reference_images_batch)
if num_ref_images > 0:
mask_padding = torch.zeros_like(mask_[:, :num_ref_images, :, :])
mask_ = torch.cat([mask_, mask_padding], dim=1)
mask_list.append(mask_)
return torch.stack(mask_list)
def prepare_latents(
self,
batch_size: int,
num_channels_latents: int = 16,
height: int = 480,
width: int = 832,
num_frames: int = 81,
dtype: Optional[torch.dtype] = None,
device: Optional[torch.device] = None,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
) -> torch.Tensor:
if latents is not None:
return latents.to(device=device, dtype=dtype)
num_latent_frames = (num_frames - 1) // self.vae_scale_factor_temporal + 1
shape = (
batch_size,
num_channels_latents,
num_latent_frames,
int(height) // self.vae_scale_factor_spatial,
int(width) // self.vae_scale_factor_spatial,
)
if isinstance(generator, list) and len(generator) != batch_size:
raise ValueError(
f"You have passed a list of generators of length {len(generator)}, but requested an effective batch"
f" size of {batch_size}. Make sure the batch size matches the length of the generators."
)
latents = randn_tensor(shape, generator=generator, device=device, dtype=dtype)
return latents
@property
def guidance_scale(self):
return self._guidance_scale
@property
def do_classifier_free_guidance(self):
return self._guidance_scale > 1.0
@property
def num_timesteps(self):
return self._num_timesteps
@property
def current_timestep(self):
return self._current_timestep
@property
def interrupt(self):
return self._interrupt
@property
def attention_kwargs(self):
return self._attention_kwargs
@torch.no_grad()
@replace_example_docstring(EXAMPLE_DOC_STRING)
def __call__(
self,
prompt: Union[str, List[str]] = None,
negative_prompt: Union[str, List[str]] = None,
video: Optional[List[PipelineImageInput]] = None,
mask: Optional[List[PipelineImageInput]] = None,
reference_images: Optional[List[PipelineImageInput]] = None,
conditioning_scale: Union[float, List[float], torch.Tensor] = 1.0,
height: int = 480,
width: int = 832,
num_frames: int = 81,
num_inference_steps: int = 50,
guidance_scale: float = 5.0,
num_videos_per_prompt: Optional[int] = 1,
generator: Optional[Union[torch.Generator, List[torch.Generator]]] = None,
latents: Optional[torch.Tensor] = None,
prompt_embeds: Optional[torch.Tensor] = None,
negative_prompt_embeds: Optional[torch.Tensor] = None,
output_type: Optional[str] = "np",
return_dict: bool = True,
attention_kwargs: Optional[Dict[str, Any]] = None,
callback_on_step_end: Optional[
Union[Callable[[int, int, Dict], None], PipelineCallback, MultiPipelineCallbacks]
] = None,
callback_on_step_end_tensor_inputs: List[str] = ["latents"],
max_sequence_length: int = 512,
):
r"""
The call function to the pipeline for generation.
Args:
prompt (`str` or `List[str]`, *optional*):
The prompt or prompts to guide the image generation. If not defined, one has to pass `prompt_embeds`.
instead.
height (`int`, defaults to `480`):
The height in pixels of the generated image.
width (`int`, defaults to `832`):
The width in pixels of the generated image.
num_frames (`int`, defaults to `81`):
The number of frames in the generated video.
num_inference_steps (`int`, defaults to `50`):
The number of denoising steps. More denoising steps usually lead to a higher quality image at the
expense of slower inference.
guidance_scale (`float`, defaults to `5.0`):
Guidance scale as defined in [Classifier-Free Diffusion Guidance](https://arxiv.org/abs/2207.12598).
`guidance_scale` is defined as `w` of equation 2. of [Imagen
Paper](https://arxiv.org/pdf/2205.11487.pdf). Guidance scale is enabled by setting `guidance_scale >
1`. Higher guidance scale encourages to generate images that are closely linked to the text `prompt`,
usually at the expense of lower image quality.
num_videos_per_prompt (`int`, *optional*, defaults to 1):
The number of images to generate per prompt.
generator (`torch.Generator` or `List[torch.Generator]`, *optional*):
A [`torch.Generator`](https://pytorch.org/docs/stable/generated/torch.Generator.html) to make
generation deterministic.
latents (`torch.Tensor`, *optional*):
Pre-generated noisy latents sampled from a Gaussian distribution, to be used as inputs for image
generation. Can be used to tweak the same generation with different prompts. If not provided, a latents
tensor is generated by sampling using the supplied random `generator`.
prompt_embeds (`torch.Tensor`, *optional*):
Pre-generated text embeddings. Can be used to easily tweak text inputs (prompt weighting). If not
provided, text embeddings are generated from the `prompt` input argument.
output_type (`str`, *optional*, defaults to `"np"`):
The output format of the generated image. Choose between `PIL.Image` or `np.array`.
return_dict (`bool`, *optional*, defaults to `True`):
Whether or not to return a [`WanPipelineOutput`] instead of a plain tuple.
attention_kwargs (`dict`, *optional*):
A kwargs dictionary that if specified is passed along to the `AttentionProcessor` as defined under
`self.processor` in
[diffusers.models.attention_processor](https://github.com/huggingface/diffusers/blob/main/src/diffusers/models/attention_processor.py).
callback_on_step_end (`Callable`, `PipelineCallback`, `MultiPipelineCallbacks`, *optional*):
A function or a subclass of `PipelineCallback` or `MultiPipelineCallbacks` that is called at the end of
each denoising step during the inference. with the following arguments: `callback_on_step_end(self:
DiffusionPipeline, step: int, timestep: int, callback_kwargs: Dict)`. `callback_kwargs` will include a
list of all tensors as specified by `callback_on_step_end_tensor_inputs`.
callback_on_step_end_tensor_inputs (`List`, *optional*):
The list of tensor inputs for the `callback_on_step_end` function. The tensors specified in the list
will be passed as `callback_kwargs` argument. You will only be able to include variables listed in the
`._callback_tensor_inputs` attribute of your pipeline class.
autocast_dtype (`torch.dtype`, *optional*, defaults to `torch.bfloat16`):
The dtype to use for the torch.amp.autocast.
Examples:
Returns:
[`~WanPipelineOutput`] or `tuple`:
If `return_dict` is `True`, [`WanPipelineOutput`] is returned, otherwise a `tuple` is returned where
the first element is a list with the generated images and the second element is a list of `bool`s
indicating whether the corresponding generated image contains "not-safe-for-work" (nsfw) content.
"""
if isinstance(callback_on_step_end, (PipelineCallback, MultiPipelineCallbacks)):
callback_on_step_end_tensor_inputs = callback_on_step_end.tensor_inputs
# Simplification of implementation for now
if not isinstance(prompt, str):
raise ValueError("Passing a list of prompts is not yet supported. This may be supported in the future.")
if num_videos_per_prompt != 1:
raise ValueError(
"Generating multiple videos per prompt is not yet supported. This may be supported in the future."
)
# 1. Check inputs. Raise error if not correct
self.check_inputs(
prompt,
negative_prompt,
height,
width,
prompt_embeds,
negative_prompt_embeds,
callback_on_step_end_tensor_inputs,
video,
mask,
reference_images,
)
if num_frames % self.vae_scale_factor_temporal != 1:
logger.warning(
f"`num_frames - 1` has to be divisible by {self.vae_scale_factor_temporal}. Rounding to the nearest number."
)
num_frames = num_frames // self.vae_scale_factor_temporal * self.vae_scale_factor_temporal + 1
num_frames = max(num_frames, 1)
self._guidance_scale = guidance_scale
self._attention_kwargs = attention_kwargs
self._current_timestep = None
self._interrupt = False
device = self._execution_device
# 2. Define call parameters
if prompt is not None and isinstance(prompt, str):
batch_size = 1
elif prompt is not None and isinstance(prompt, list):
batch_size = len(prompt)
else:
batch_size = prompt_embeds.shape[0]
vae_dtype = self.vae.dtype
transformer_dtype = self.transformer.dtype
if isinstance(conditioning_scale, (int, float)):
conditioning_scale = [conditioning_scale] * len(self.transformer.config.vace_layers)
if isinstance(conditioning_scale, list):
if len(conditioning_scale) != len(self.transformer.config.vace_layers):
raise ValueError(
f"Length of `conditioning_scale` {len(conditioning_scale)} does not match number of layers {len(self.transformer.config.vace_layers)}."
)
conditioning_scale = torch.tensor(conditioning_scale)
if isinstance(conditioning_scale, torch.Tensor):
if conditioning_scale.size(0) != len(self.transformer.config.vace_layers):
raise ValueError(
f"Length of `conditioning_scale` {conditioning_scale.size(0)} does not match number of layers {len(self.transformer.config.vace_layers)}."
)
conditioning_scale = conditioning_scale.to(device=device, dtype=transformer_dtype)
# 3. Encode input prompt
prompt_embeds, negative_prompt_embeds = self.encode_prompt(
prompt=prompt,
negative_prompt=negative_prompt,
do_classifier_free_guidance=self.do_classifier_free_guidance,
num_videos_per_prompt=num_videos_per_prompt,
prompt_embeds=prompt_embeds,
negative_prompt_embeds=negative_prompt_embeds,
max_sequence_length=max_sequence_length,
device=device,
)
prompt_embeds = prompt_embeds.to(transformer_dtype)
if negative_prompt_embeds is not None:
negative_prompt_embeds = negative_prompt_embeds.to(transformer_dtype)
# 4. Prepare timesteps
self.scheduler.set_timesteps(num_inference_steps, device=device)
timesteps = self.scheduler.timesteps
# 5. Prepare latent variables
video, mask, reference_images = self.preprocess_conditions(
video,
mask,
reference_images,
batch_size,
height,
width,
num_frames,
torch.float32,
device,
)
num_reference_images = len(reference_images[0])
conditioning_latents = self.prepare_video_latents(video, mask, reference_images, generator, device)
mask = self.prepare_masks(mask, reference_images, generator)
conditioning_latents = torch.cat([conditioning_latents, mask], dim=1)
conditioning_latents = conditioning_latents.to(transformer_dtype)
num_channels_latents = self.transformer.config.in_channels
latents = self.prepare_latents(
batch_size * num_videos_per_prompt,
num_channels_latents,
height,
width,
num_frames + num_reference_images * self.vae_scale_factor_temporal,
torch.float32,
device,
generator,
latents,
)
if conditioning_latents.shape[2] != latents.shape[2]:
logger.warning(
"The number of frames in the conditioning latents does not match the number of frames to be generated. Generation quality may be affected."
)
# 6. Denoising loop
num_warmup_steps = len(timesteps) - num_inference_steps * self.scheduler.order
self._num_timesteps = len(timesteps)
with self.progress_bar(total=num_inference_steps) as progress_bar:
for i, t in enumerate(timesteps):
if self.interrupt:
continue
self._current_timestep = t
latent_model_input = latents.to(transformer_dtype)
timestep = t.expand(latents.shape[0])
noise_pred = self.transformer(
hidden_states=latent_model_input,
timestep=timestep,
encoder_hidden_states=prompt_embeds,
control_hidden_states=conditioning_latents,
control_hidden_states_scale=conditioning_scale,
attention_kwargs=attention_kwargs,
return_dict=False,
)[0]
if self.do_classifier_free_guidance:
noise_uncond = self.transformer(
hidden_states=latent_model_input,
timestep=timestep,
encoder_hidden_states=negative_prompt_embeds,
control_hidden_states=conditioning_latents,
control_hidden_states_scale=conditioning_scale,
attention_kwargs=attention_kwargs,
return_dict=False,
)[0]
noise_pred = noise_uncond + guidance_scale * (noise_pred - noise_uncond)
# compute the previous noisy sample x_t -> x_t-1
latents = self.scheduler.step(noise_pred, t, latents, return_dict=False)[0]
if callback_on_step_end is not None:
callback_kwargs = {}
for k in callback_on_step_end_tensor_inputs:
callback_kwargs[k] = locals()[k]
callback_outputs = callback_on_step_end(self, i, t, callback_kwargs)
latents = callback_outputs.pop("latents", latents)
prompt_embeds = callback_outputs.pop("prompt_embeds", prompt_embeds)
negative_prompt_embeds = callback_outputs.pop("negative_prompt_embeds", negative_prompt_embeds)
# call the callback, if provided
if i == len(timesteps) - 1 or ((i + 1) > num_warmup_steps and (i + 1) % self.scheduler.order == 0):
progress_bar.update()
if XLA_AVAILABLE:
xm.mark_step()
self._current_timestep = None
if not output_type == "latent":
latents = latents[:, :, num_reference_images:]
latents = latents.to(vae_dtype)
latents_mean = (
torch.tensor(self.vae.config.latents_mean)
.view(1, self.vae.config.z_dim, 1, 1, 1)
.to(latents.device, latents.dtype)
)
latents_std = 1.0 / torch.tensor(self.vae.config.latents_std).view(1, self.vae.config.z_dim, 1, 1, 1).to(
latents.device, latents.dtype
)
latents = latents / latents_std + latents_mean
video = self.vae.decode(latents, return_dict=False)[0]
video = self.video_processor.postprocess_video(video, output_type=output_type)
else:
video = latents
# Offload all models
self.maybe_free_model_hooks()
if not return_dict:
return (video,)
return WanPipelineOutput(frames=video)
|