Spaces:
Runtime error
Runtime error
File size: 16,191 Bytes
22a452a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 |
<!-- Copyright 2024 The HuggingFace Team. All rights reserved.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License. -->
<div style="float: right;">
<div class="flex flex-wrap space-x-1">
<a href="https://huggingface.co/docs/diffusers/main/en/tutorials/using_peft_for_inference" target="_blank" rel="noopener">
<img alt="LoRA" src="https://img.shields.io/badge/LoRA-d8b4fe?style=flat"/>
</a>
</div>
</div>
# Wan2.1
[Wan-2.1](https://huggingface.co/papers/2503.20314) by the Wan Team.
*This report presents Wan, a comprehensive and open suite of video foundation models designed to push the boundaries of video generation. Built upon the mainstream diffusion transformer paradigm, Wan achieves significant advancements in generative capabilities through a series of innovations, including our novel VAE, scalable pre-training strategies, large-scale data curation, and automated evaluation metrics. These contributions collectively enhance the model's performance and versatility. Specifically, Wan is characterized by four key features: Leading Performance: The 14B model of Wan, trained on a vast dataset comprising billions of images and videos, demonstrates the scaling laws of video generation with respect to both data and model size. It consistently outperforms the existing open-source models as well as state-of-the-art commercial solutions across multiple internal and external benchmarks, demonstrating a clear and significant performance superiority. Comprehensiveness: Wan offers two capable models, i.e., 1.3B and 14B parameters, for efficiency and effectiveness respectively. It also covers multiple downstream applications, including image-to-video, instruction-guided video editing, and personal video generation, encompassing up to eight tasks. Consumer-Grade Efficiency: The 1.3B model demonstrates exceptional resource efficiency, requiring only 8.19 GB VRAM, making it compatible with a wide range of consumer-grade GPUs. Openness: We open-source the entire series of Wan, including source code and all models, with the goal of fostering the growth of the video generation community. This openness seeks to significantly expand the creative possibilities of video production in the industry and provide academia with high-quality video foundation models. All the code and models are available at [this https URL](https://github.com/Wan-Video/Wan2.1).*
You can find all the original Wan2.1 checkpoints under the [Wan-AI](https://huggingface.co/Wan-AI) organization.
The following Wan models are supported in Diffusers:
- [Wan 2.1 T2V 1.3B](https://huggingface.co/Wan-AI/Wan2.1-T2V-1.3B-Diffusers)
- [Wan 2.1 T2V 14B](https://huggingface.co/Wan-AI/Wan2.1-T2V-14B-Diffusers)
- [Wan 2.1 I2V 14B - 480P](https://huggingface.co/Wan-AI/Wan2.1-I2V-14B-480P-Diffusers)
- [Wan 2.1 I2V 14B - 720P](https://huggingface.co/Wan-AI/Wan2.1-I2V-14B-720P-Diffusers)
- [Wan 2.1 FLF2V 14B - 720P](https://huggingface.co/Wan-AI/Wan2.1-FLF2V-14B-720P-diffusers)
- [Wan 2.1 VACE 1.3B](https://huggingface.co/Wan-AI/Wan2.1-VACE-1.3B-diffusers)
- [Wan 2.1 VACE 14B](https://huggingface.co/Wan-AI/Wan2.1-VACE-14B-diffusers)
> [!TIP]
> Click on the Wan2.1 models in the right sidebar for more examples of video generation.
### Text-to-Video Generation
The example below demonstrates how to generate a video from text optimized for memory or inference speed.
<hfoptions id="T2V usage">
<hfoption id="T2V memory">
Refer to the [Reduce memory usage](../../optimization/memory) guide for more details about the various memory saving techniques.
The Wan2.1 text-to-video model below requires ~13GB of VRAM.
```py
# pip install ftfy
import torch
import numpy as np
from diffusers import AutoModel, WanPipeline
from diffusers.quantizers import PipelineQuantizationConfig
from diffusers.hooks.group_offloading import apply_group_offloading
from diffusers.utils import export_to_video, load_image
from transformers import UMT5EncoderModel
text_encoder = UMT5EncoderModel.from_pretrained("Wan-AI/Wan2.1-T2V-14B-Diffusers", subfolder="text_encoder", torch_dtype=torch.bfloat16)
vae = AutoModel.from_pretrained("Wan-AI/Wan2.1-T2V-14B-Diffusers", subfolder="vae", torch_dtype=torch.float32)
transformer = AutoModel.from_pretrained("Wan-AI/Wan2.1-T2V-14B-Diffusers", subfolder="transformer", torch_dtype=torch.bfloat16)
# group-offloading
onload_device = torch.device("cuda")
offload_device = torch.device("cpu")
apply_group_offloading(text_encoder,
onload_device=onload_device,
offload_device=offload_device,
offload_type="block_level",
num_blocks_per_group=4
)
transformer.enable_group_offload(
onload_device=onload_device,
offload_device=offload_device,
offload_type="leaf_level",
use_stream=True
)
pipeline = WanPipeline.from_pretrained(
"Wan-AI/Wan2.1-T2V-14B-Diffusers",
vae=vae,
transformer=transformer,
text_encoder=text_encoder,
torch_dtype=torch.bfloat16
)
pipeline.to("cuda")
prompt = """
The camera rushes from far to near in a low-angle shot,
revealing a white ferret on a log. It plays, leaps into the water, and emerges, as the camera zooms in
for a close-up. Water splashes berry bushes nearby, while moss, snow, and leaves blanket the ground.
Birch trees and a light blue sky frame the scene, with ferns in the foreground. Side lighting casts dynamic
shadows and warm highlights. Medium composition, front view, low angle, with depth of field.
"""
negative_prompt = """
Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality,
low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured,
misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards
"""
output = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_frames=81,
guidance_scale=5.0,
).frames[0]
export_to_video(output, "output.mp4", fps=16)
```
</hfoption>
<hfoption id="T2V inference speed">
[Compilation](../../optimization/fp16#torchcompile) is slow the first time but subsequent calls to the pipeline are faster.
```py
# pip install ftfy
import torch
import numpy as np
from diffusers import AutoModel, WanPipeline
from diffusers.hooks.group_offloading import apply_group_offloading
from diffusers.utils import export_to_video, load_image
from transformers import UMT5EncoderModel
text_encoder = UMT5EncoderModel.from_pretrained("Wan-AI/Wan2.1-T2V-14B-Diffusers", subfolder="text_encoder", torch_dtype=torch.bfloat16)
vae = AutoModel.from_pretrained("Wan-AI/Wan2.1-T2V-14B-Diffusers", subfolder="vae", torch_dtype=torch.float32)
transformer = AutoModel.from_pretrained("Wan-AI/Wan2.1-T2V-14B-Diffusers", subfolder="transformer", torch_dtype=torch.bfloat16)
pipeline = WanPipeline.from_pretrained(
"Wan-AI/Wan2.1-T2V-14B-Diffusers",
vae=vae,
transformer=transformer,
text_encoder=text_encoder,
torch_dtype=torch.bfloat16
)
pipeline.to("cuda")
# torch.compile
pipeline.transformer.to(memory_format=torch.channels_last)
pipeline.transformer = torch.compile(
pipeline.transformer, mode="max-autotune", fullgraph=True
)
prompt = """
The camera rushes from far to near in a low-angle shot,
revealing a white ferret on a log. It plays, leaps into the water, and emerges, as the camera zooms in
for a close-up. Water splashes berry bushes nearby, while moss, snow, and leaves blanket the ground.
Birch trees and a light blue sky frame the scene, with ferns in the foreground. Side lighting casts dynamic
shadows and warm highlights. Medium composition, front view, low angle, with depth of field.
"""
negative_prompt = """
Bright tones, overexposed, static, blurred details, subtitles, style, works, paintings, images, static, overall gray, worst quality,
low quality, JPEG compression residue, ugly, incomplete, extra fingers, poorly drawn hands, poorly drawn faces, deformed, disfigured,
misshapen limbs, fused fingers, still picture, messy background, three legs, many people in the background, walking backwards
"""
output = pipeline(
prompt=prompt,
negative_prompt=negative_prompt,
num_frames=81,
guidance_scale=5.0,
).frames[0]
export_to_video(output, "output.mp4", fps=16)
```
</hfoption>
</hfoptions>
### First-Last-Frame-to-Video Generation
The example below demonstrates how to use the image-to-video pipeline to generate a video using a text description, a starting frame, and an ending frame.
<hfoptions id="FLF2V usage">
<hfoption id="usage">
```python
import numpy as np
import torch
import torchvision.transforms.functional as TF
from diffusers import AutoencoderKLWan, WanImageToVideoPipeline
from diffusers.utils import export_to_video, load_image
from transformers import CLIPVisionModel
model_id = "Wan-AI/Wan2.1-FLF2V-14B-720P-diffusers"
image_encoder = CLIPVisionModel.from_pretrained(model_id, subfolder="image_encoder", torch_dtype=torch.float32)
vae = AutoencoderKLWan.from_pretrained(model_id, subfolder="vae", torch_dtype=torch.float32)
pipe = WanImageToVideoPipeline.from_pretrained(
model_id, vae=vae, image_encoder=image_encoder, torch_dtype=torch.bfloat16
)
pipe.to("cuda")
first_frame = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/flf2v_input_first_frame.png")
last_frame = load_image("https://huggingface.co/datasets/huggingface/documentation-images/resolve/main/diffusers/flf2v_input_last_frame.png")
def aspect_ratio_resize(image, pipe, max_area=720 * 1280):
aspect_ratio = image.height / image.width
mod_value = pipe.vae_scale_factor_spatial * pipe.transformer.config.patch_size[1]
height = round(np.sqrt(max_area * aspect_ratio)) // mod_value * mod_value
width = round(np.sqrt(max_area / aspect_ratio)) // mod_value * mod_value
image = image.resize((width, height))
return image, height, width
def center_crop_resize(image, height, width):
# Calculate resize ratio to match first frame dimensions
resize_ratio = max(width / image.width, height / image.height)
# Resize the image
width = round(image.width * resize_ratio)
height = round(image.height * resize_ratio)
size = [width, height]
image = TF.center_crop(image, size)
return image, height, width
first_frame, height, width = aspect_ratio_resize(first_frame, pipe)
if last_frame.size != first_frame.size:
last_frame, _, _ = center_crop_resize(last_frame, height, width)
prompt = "CG animation style, a small blue bird takes off from the ground, flapping its wings. The bird's feathers are delicate, with a unique pattern on its chest. The background shows a blue sky with white clouds under bright sunshine. The camera follows the bird upward, capturing its flight and the vastness of the sky from a close-up, low-angle perspective."
output = pipe(
image=first_frame, last_image=last_frame, prompt=prompt, height=height, width=width, guidance_scale=5.5
).frames[0]
export_to_video(output, "output.mp4", fps=16)
```
</hfoption>
</hfoptions>
### Any-to-Video Controllable Generation
Wan VACE supports various generation techniques which achieve controllable video generation. Some of the capabilities include:
- Control to Video (Depth, Pose, Sketch, Flow, Grayscale, Scribble, Layout, Boundary Box, etc.). Recommended library for preprocessing videos to obtain control videos: [huggingface/controlnet_aux]()
- Image/Video to Video (first frame, last frame, starting clip, ending clip, random clips)
- Inpainting and Outpainting
- Subject to Video (faces, object, characters, etc.)
- Composition to Video (reference anything, animate anything, swap anything, expand anything, move anything, etc.)
The code snippets available in [this](https://github.com/huggingface/diffusers/pull/11582) pull request demonstrate some examples of how videos can be generated with controllability signals.
The general rule of thumb to keep in mind when preparing inputs for the VACE pipeline is that the input images, or frames of a video that you want to use for conditioning, should have a corresponding mask that is black in color. The black mask signifies that the model will not generate new content for that area, and only use those parts for conditioning the generation process. For parts/frames that should be generated by the model, the mask should be white in color.
## Notes
- Wan2.1 supports LoRAs with [`~loaders.WanLoraLoaderMixin.load_lora_weights`].
<details>
<summary>Show example code</summary>
```py
# pip install ftfy
import torch
from diffusers import AutoModel, WanPipeline
from diffusers.schedulers.scheduling_unipc_multistep import UniPCMultistepScheduler
from diffusers.utils import export_to_video
vae = AutoModel.from_pretrained(
"Wan-AI/Wan2.1-T2V-1.3B-Diffusers", subfolder="vae", torch_dtype=torch.float32
)
pipeline = WanPipeline.from_pretrained(
"Wan-AI/Wan2.1-T2V-1.3B-Diffusers", vae=vae, torch_dtype=torch.bfloat16
)
pipeline.scheduler = UniPCMultistepScheduler.from_config(
pipeline.scheduler.config, flow_shift=5.0
)
pipeline.to("cuda")
pipeline.load_lora_weights("benjamin-paine/steamboat-willie-1.3b", adapter_name="steamboat-willie")
pipeline.set_adapters("steamboat-willie")
pipeline.enable_model_cpu_offload()
# use "steamboat willie style" to trigger the LoRA
prompt = """
steamboat willie style, golden era animation, The camera rushes from far to near in a low-angle shot,
revealing a white ferret on a log. It plays, leaps into the water, and emerges, as the camera zooms in
for a close-up. Water splashes berry bushes nearby, while moss, snow, and leaves blanket the ground.
Birch trees and a light blue sky frame the scene, with ferns in the foreground. Side lighting casts dynamic
shadows and warm highlights. Medium composition, front view, low angle, with depth of field.
"""
output = pipeline(
prompt=prompt,
num_frames=81,
guidance_scale=5.0,
).frames[0]
export_to_video(output, "output.mp4", fps=16)
```
</details>
- [`WanTransformer3DModel`] and [`AutoencoderKLWan`] supports loading from single files with [`~loaders.FromSingleFileMixin.from_single_file`].
<details>
<summary>Show example code</summary>
```py
# pip install ftfy
import torch
from diffusers import WanPipeline, AutoModel
vae = AutoModel.from_single_file(
"https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/blob/main/split_files/vae/wan_2.1_vae.safetensors"
)
transformer = AutoModel.from_single_file(
"https://huggingface.co/Comfy-Org/Wan_2.1_ComfyUI_repackaged/blob/main/split_files/diffusion_models/wan2.1_t2v_1.3B_bf16.safetensors",
torch_dtype=torch.bfloat16
)
pipeline = WanPipeline.from_pretrained(
"Wan-AI/Wan2.1-T2V-1.3B-Diffusers",
vae=vae,
transformer=transformer,
torch_dtype=torch.bfloat16
)
```
</details>
- Set the [`AutoencoderKLWan`] dtype to `torch.float32` for better decoding quality.
- The number of frames per second (fps) or `k` should be calculated by `4 * k + 1`.
- Try lower `shift` values (`2.0` to `5.0`) for lower resolution videos and higher `shift` values (`7.0` to `12.0`) for higher resolution images.
## WanPipeline
[[autodoc]] WanPipeline
- all
- __call__
## WanImageToVideoPipeline
[[autodoc]] WanImageToVideoPipeline
- all
- __call__
## WanVACEPipeline
[[autodoc]] WanVACEPipeline
- all
- __call__
## WanVideoToVideoPipeline
[[autodoc]] WanVideoToVideoPipeline
- all
- __call__
## WanPipelineOutput
[[autodoc]] pipelines.wan.pipeline_output.WanPipelineOutput |