Spaces:
Runtime error
Runtime error
File size: 126,930 Bytes
22a452a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 2448 2449 2450 2451 2452 2453 2454 2455 2456 2457 2458 2459 2460 2461 2462 2463 2464 2465 2466 2467 2468 2469 2470 2471 2472 2473 2474 2475 2476 2477 2478 2479 2480 2481 2482 2483 2484 2485 2486 2487 2488 2489 2490 2491 2492 2493 2494 2495 2496 2497 2498 2499 2500 2501 2502 2503 2504 2505 2506 2507 2508 2509 2510 2511 2512 2513 2514 2515 2516 2517 2518 2519 2520 2521 2522 2523 2524 2525 2526 2527 2528 2529 2530 2531 2532 2533 2534 2535 2536 2537 2538 2539 2540 2541 2542 2543 2544 2545 2546 2547 2548 2549 2550 2551 2552 2553 2554 2555 2556 2557 2558 2559 2560 2561 2562 2563 2564 2565 2566 2567 2568 2569 2570 2571 2572 2573 2574 2575 2576 2577 2578 2579 2580 2581 2582 2583 2584 2585 2586 2587 2588 2589 2590 2591 2592 2593 2594 2595 2596 2597 2598 2599 2600 2601 2602 2603 2604 2605 2606 2607 2608 2609 2610 2611 2612 2613 2614 2615 2616 2617 2618 2619 2620 2621 2622 2623 2624 2625 2626 2627 2628 2629 2630 2631 2632 2633 2634 2635 2636 2637 2638 2639 2640 2641 2642 2643 2644 2645 2646 2647 2648 2649 2650 2651 2652 2653 2654 2655 2656 2657 2658 2659 2660 2661 2662 2663 2664 2665 2666 2667 2668 2669 2670 2671 2672 2673 2674 2675 2676 2677 2678 2679 2680 2681 2682 2683 2684 2685 2686 2687 2688 2689 2690 2691 2692 2693 2694 2695 2696 2697 2698 2699 2700 2701 2702 2703 2704 2705 2706 2707 2708 2709 2710 2711 2712 2713 2714 2715 2716 2717 2718 2719 2720 2721 2722 2723 2724 2725 2726 2727 2728 2729 2730 2731 2732 2733 2734 2735 2736 2737 2738 2739 2740 2741 2742 2743 2744 2745 2746 2747 2748 2749 2750 2751 2752 2753 2754 2755 2756 2757 2758 |
import gc
import inspect
import json
import os
import tempfile
import unittest
import uuid
from typing import Any, Callable, Dict, Union
import numpy as np
import PIL.Image
import torch
import torch.nn as nn
from huggingface_hub import ModelCard, delete_repo
from huggingface_hub.utils import is_jinja_available
from transformers import CLIPTextConfig, CLIPTextModel, CLIPTokenizer
import diffusers
from diffusers import (
AsymmetricAutoencoderKL,
AutoencoderKL,
AutoencoderTiny,
ConsistencyDecoderVAE,
DDIMScheduler,
DiffusionPipeline,
FasterCacheConfig,
KolorsPipeline,
PyramidAttentionBroadcastConfig,
StableDiffusionPipeline,
StableDiffusionXLPipeline,
UNet2DConditionModel,
apply_faster_cache,
)
from diffusers.hooks import apply_group_offloading
from diffusers.hooks.faster_cache import FasterCacheBlockHook, FasterCacheDenoiserHook
from diffusers.hooks.pyramid_attention_broadcast import PyramidAttentionBroadcastHook
from diffusers.image_processor import VaeImageProcessor
from diffusers.loaders import FluxIPAdapterMixin, IPAdapterMixin
from diffusers.models.attention_processor import AttnProcessor
from diffusers.models.controlnets.controlnet_xs import UNetControlNetXSModel
from diffusers.models.unets.unet_3d_condition import UNet3DConditionModel
from diffusers.models.unets.unet_i2vgen_xl import I2VGenXLUNet
from diffusers.models.unets.unet_motion_model import UNetMotionModel
from diffusers.pipelines.pipeline_utils import StableDiffusionMixin
from diffusers.schedulers import KarrasDiffusionSchedulers
from diffusers.utils import logging
from diffusers.utils.import_utils import is_xformers_available
from diffusers.utils.source_code_parsing_utils import ReturnNameVisitor
from diffusers.utils.testing_utils import (
CaptureLogger,
backend_empty_cache,
require_accelerate_version_greater,
require_accelerator,
require_hf_hub_version_greater,
require_torch,
require_torch_accelerator,
require_transformers_version_greater,
skip_mps,
torch_device,
)
from ..models.autoencoders.vae import (
get_asym_autoencoder_kl_config,
get_autoencoder_kl_config,
get_autoencoder_tiny_config,
get_consistency_vae_config,
)
from ..models.transformers.test_models_transformer_flux import create_flux_ip_adapter_state_dict
from ..models.unets.test_models_unet_2d_condition import (
create_ip_adapter_faceid_state_dict,
create_ip_adapter_state_dict,
)
from ..others.test_utils import TOKEN, USER, is_staging_test
def to_np(tensor):
if isinstance(tensor, torch.Tensor):
tensor = tensor.detach().cpu().numpy()
return tensor
def check_same_shape(tensor_list):
shapes = [tensor.shape for tensor in tensor_list]
return all(shape == shapes[0] for shape in shapes[1:])
def check_qkv_fusion_matches_attn_procs_length(model, original_attn_processors):
current_attn_processors = model.attn_processors
return len(current_attn_processors) == len(original_attn_processors)
def check_qkv_fusion_processors_exist(model):
current_attn_processors = model.attn_processors
proc_names = [v.__class__.__name__ for _, v in current_attn_processors.items()]
return all(p.startswith("Fused") for p in proc_names)
class SDFunctionTesterMixin:
"""
This mixin is designed to be used with PipelineTesterMixin and unittest.TestCase classes.
It provides a set of common tests for PyTorch pipeline that inherit from StableDiffusionMixin, e.g. vae_slicing, vae_tiling, freeu, etc.
"""
def test_vae_slicing(self, image_count=4):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
# components["scheduler"] = LMSDiscreteScheduler.from_config(components["scheduler"].config)
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
inputs["prompt"] = [inputs["prompt"]] * image_count
if "image" in inputs: # fix batch size mismatch in I2V_Gen pipeline
inputs["image"] = [inputs["image"]] * image_count
output_1 = pipe(**inputs)
# make sure sliced vae decode yields the same result
pipe.enable_vae_slicing()
inputs = self.get_dummy_inputs(device)
inputs["prompt"] = [inputs["prompt"]] * image_count
if "image" in inputs:
inputs["image"] = [inputs["image"]] * image_count
inputs["return_dict"] = False
output_2 = pipe(**inputs)
assert np.abs(output_2[0].flatten() - output_1[0].flatten()).max() < 1e-2
def test_vae_tiling(self):
components = self.get_dummy_components()
# make sure here that pndm scheduler skips prk
if "safety_checker" in components:
components["safety_checker"] = None
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
inputs["return_dict"] = False
# Test that tiled decode at 512x512 yields the same result as the non-tiled decode
output_1 = pipe(**inputs)[0]
# make sure tiled vae decode yields the same result
pipe.enable_vae_tiling()
inputs = self.get_dummy_inputs(torch_device)
inputs["return_dict"] = False
output_2 = pipe(**inputs)[0]
assert np.abs(to_np(output_2) - to_np(output_1)).max() < 5e-1
# test that tiled decode works with various shapes
shapes = [(1, 4, 73, 97), (1, 4, 65, 49)]
with torch.no_grad():
for shape in shapes:
zeros = torch.zeros(shape).to(torch_device)
pipe.vae.decode(zeros)
# MPS currently doesn't support ComplexFloats, which are required for FreeU - see https://github.com/huggingface/diffusers/issues/7569.
@skip_mps
def test_freeu(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
# Normal inference
inputs = self.get_dummy_inputs(torch_device)
inputs["return_dict"] = False
inputs["output_type"] = "np"
output = pipe(**inputs)[0]
# FreeU-enabled inference
pipe.enable_freeu(s1=0.9, s2=0.2, b1=1.2, b2=1.4)
inputs = self.get_dummy_inputs(torch_device)
inputs["return_dict"] = False
inputs["output_type"] = "np"
output_freeu = pipe(**inputs)[0]
# FreeU-disabled inference
pipe.disable_freeu()
freeu_keys = {"s1", "s2", "b1", "b2"}
for upsample_block in pipe.unet.up_blocks:
for key in freeu_keys:
assert getattr(upsample_block, key) is None, f"Disabling of FreeU should have set {key} to None."
inputs = self.get_dummy_inputs(torch_device)
inputs["return_dict"] = False
inputs["output_type"] = "np"
output_no_freeu = pipe(**inputs)[0]
assert not np.allclose(output[0, -3:, -3:, -1], output_freeu[0, -3:, -3:, -1]), (
"Enabling of FreeU should lead to different results."
)
assert np.allclose(output, output_no_freeu, atol=1e-2), (
f"Disabling of FreeU should lead to results similar to the default pipeline results but Max Abs Error={np.abs(output_no_freeu - output).max()}."
)
def test_fused_qkv_projections(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device)
inputs["return_dict"] = False
image = pipe(**inputs)[0]
original_image_slice = image[0, -3:, -3:, -1]
pipe.fuse_qkv_projections()
for _, component in pipe.components.items():
if (
isinstance(component, nn.Module)
and hasattr(component, "original_attn_processors")
and component.original_attn_processors is not None
):
assert check_qkv_fusion_processors_exist(component), (
"Something wrong with the fused attention processors. Expected all the attention processors to be fused."
)
assert check_qkv_fusion_matches_attn_procs_length(component, component.original_attn_processors), (
"Something wrong with the attention processors concerning the fused QKV projections."
)
inputs = self.get_dummy_inputs(device)
inputs["return_dict"] = False
image_fused = pipe(**inputs)[0]
image_slice_fused = image_fused[0, -3:, -3:, -1]
pipe.unfuse_qkv_projections()
inputs = self.get_dummy_inputs(device)
inputs["return_dict"] = False
image_disabled = pipe(**inputs)[0]
image_slice_disabled = image_disabled[0, -3:, -3:, -1]
assert np.allclose(original_image_slice, image_slice_fused, atol=1e-2, rtol=1e-2), (
"Fusion of QKV projections shouldn't affect the outputs."
)
assert np.allclose(image_slice_fused, image_slice_disabled, atol=1e-2, rtol=1e-2), (
"Outputs, with QKV projection fusion enabled, shouldn't change when fused QKV projections are disabled."
)
assert np.allclose(original_image_slice, image_slice_disabled, atol=1e-2, rtol=1e-2), (
"Original outputs should match when fused QKV projections are disabled."
)
class IPAdapterTesterMixin:
"""
This mixin is designed to be used with PipelineTesterMixin and unittest.TestCase classes.
It provides a set of common tests for pipelines that support IP Adapters.
"""
def test_pipeline_signature(self):
parameters = inspect.signature(self.pipeline_class.__call__).parameters
assert issubclass(self.pipeline_class, IPAdapterMixin)
self.assertIn(
"ip_adapter_image",
parameters,
"`ip_adapter_image` argument must be supported by the `__call__` method",
)
self.assertIn(
"ip_adapter_image_embeds",
parameters,
"`ip_adapter_image_embeds` argument must be supported by the `__call__` method",
)
def _get_dummy_image_embeds(self, cross_attention_dim: int = 32):
return torch.randn((2, 1, cross_attention_dim), device=torch_device)
def _get_dummy_faceid_image_embeds(self, cross_attention_dim: int = 32):
return torch.randn((2, 1, 1, cross_attention_dim), device=torch_device)
def _get_dummy_masks(self, input_size: int = 64):
_masks = torch.zeros((1, 1, input_size, input_size), device=torch_device)
_masks[0, :, :, : int(input_size / 2)] = 1
return _masks
def _modify_inputs_for_ip_adapter_test(self, inputs: Dict[str, Any]):
parameters = inspect.signature(self.pipeline_class.__call__).parameters
if "image" in parameters.keys() and "strength" in parameters.keys():
inputs["num_inference_steps"] = 4
inputs["output_type"] = "np"
inputs["return_dict"] = False
return inputs
def test_ip_adapter(self, expected_max_diff: float = 1e-4, expected_pipe_slice=None):
r"""Tests for IP-Adapter.
The following scenarios are tested:
- Single IP-Adapter with scale=0 should produce same output as no IP-Adapter.
- Multi IP-Adapter with scale=0 should produce same output as no IP-Adapter.
- Single IP-Adapter with scale!=0 should produce different output compared to no IP-Adapter.
- Multi IP-Adapter with scale!=0 should produce different output compared to no IP-Adapter.
"""
# Raising the tolerance for this test when it's run on a CPU because we
# compare against static slices and that can be shaky (with a VVVV low probability).
expected_max_diff = 9e-4 if torch_device == "cpu" else expected_max_diff
components = self.get_dummy_components()
pipe = self.pipeline_class(**components).to(torch_device)
pipe.set_progress_bar_config(disable=None)
cross_attention_dim = pipe.unet.config.get("cross_attention_dim", 32)
# forward pass without ip adapter
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
if expected_pipe_slice is None:
output_without_adapter = pipe(**inputs)[0]
else:
output_without_adapter = expected_pipe_slice
# 1. Single IP-Adapter test cases
adapter_state_dict = create_ip_adapter_state_dict(pipe.unet)
pipe.unet._load_ip_adapter_weights(adapter_state_dict)
# forward pass with single ip adapter, but scale=0 which should have no effect
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)]
pipe.set_ip_adapter_scale(0.0)
output_without_adapter_scale = pipe(**inputs)[0]
if expected_pipe_slice is not None:
output_without_adapter_scale = output_without_adapter_scale[0, -3:, -3:, -1].flatten()
# forward pass with single ip adapter, but with scale of adapter weights
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)]
pipe.set_ip_adapter_scale(42.0)
output_with_adapter_scale = pipe(**inputs)[0]
if expected_pipe_slice is not None:
output_with_adapter_scale = output_with_adapter_scale[0, -3:, -3:, -1].flatten()
max_diff_without_adapter_scale = np.abs(output_without_adapter_scale - output_without_adapter).max()
max_diff_with_adapter_scale = np.abs(output_with_adapter_scale - output_without_adapter).max()
self.assertLess(
max_diff_without_adapter_scale,
expected_max_diff,
"Output without ip-adapter must be same as normal inference",
)
self.assertGreater(
max_diff_with_adapter_scale, 1e-2, "Output with ip-adapter must be different from normal inference"
)
# 2. Multi IP-Adapter test cases
adapter_state_dict_1 = create_ip_adapter_state_dict(pipe.unet)
adapter_state_dict_2 = create_ip_adapter_state_dict(pipe.unet)
pipe.unet._load_ip_adapter_weights([adapter_state_dict_1, adapter_state_dict_2])
# forward pass with multi ip adapter, but scale=0 which should have no effect
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)] * 2
pipe.set_ip_adapter_scale([0.0, 0.0])
output_without_multi_adapter_scale = pipe(**inputs)[0]
if expected_pipe_slice is not None:
output_without_multi_adapter_scale = output_without_multi_adapter_scale[0, -3:, -3:, -1].flatten()
# forward pass with multi ip adapter, but with scale of adapter weights
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)] * 2
pipe.set_ip_adapter_scale([42.0, 42.0])
output_with_multi_adapter_scale = pipe(**inputs)[0]
if expected_pipe_slice is not None:
output_with_multi_adapter_scale = output_with_multi_adapter_scale[0, -3:, -3:, -1].flatten()
max_diff_without_multi_adapter_scale = np.abs(
output_without_multi_adapter_scale - output_without_adapter
).max()
max_diff_with_multi_adapter_scale = np.abs(output_with_multi_adapter_scale - output_without_adapter).max()
self.assertLess(
max_diff_without_multi_adapter_scale,
expected_max_diff,
"Output without multi-ip-adapter must be same as normal inference",
)
self.assertGreater(
max_diff_with_multi_adapter_scale,
1e-2,
"Output with multi-ip-adapter scale must be different from normal inference",
)
def test_ip_adapter_cfg(self, expected_max_diff: float = 1e-4):
parameters = inspect.signature(self.pipeline_class.__call__).parameters
if "guidance_scale" not in parameters:
return
components = self.get_dummy_components()
pipe = self.pipeline_class(**components).to(torch_device)
pipe.set_progress_bar_config(disable=None)
cross_attention_dim = pipe.unet.config.get("cross_attention_dim", 32)
adapter_state_dict = create_ip_adapter_state_dict(pipe.unet)
pipe.unet._load_ip_adapter_weights(adapter_state_dict)
pipe.set_ip_adapter_scale(1.0)
# forward pass with CFG not applied
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)[0].unsqueeze(0)]
inputs["guidance_scale"] = 1.0
out_no_cfg = pipe(**inputs)[0]
# forward pass with CFG applied
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)]
inputs["guidance_scale"] = 7.5
out_cfg = pipe(**inputs)[0]
assert out_cfg.shape == out_no_cfg.shape
def test_ip_adapter_masks(self, expected_max_diff: float = 1e-4):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components).to(torch_device)
pipe.set_progress_bar_config(disable=None)
cross_attention_dim = pipe.unet.config.get("cross_attention_dim", 32)
sample_size = pipe.unet.config.get("sample_size", 32)
block_out_channels = pipe.vae.config.get("block_out_channels", [128, 256, 512, 512])
input_size = sample_size * (2 ** (len(block_out_channels) - 1))
# forward pass without ip adapter
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
output_without_adapter = pipe(**inputs)[0]
output_without_adapter = output_without_adapter[0, -3:, -3:, -1].flatten()
adapter_state_dict = create_ip_adapter_state_dict(pipe.unet)
pipe.unet._load_ip_adapter_weights(adapter_state_dict)
# forward pass with single ip adapter and masks, but scale=0 which should have no effect
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)]
inputs["cross_attention_kwargs"] = {"ip_adapter_masks": [self._get_dummy_masks(input_size)]}
pipe.set_ip_adapter_scale(0.0)
output_without_adapter_scale = pipe(**inputs)[0]
output_without_adapter_scale = output_without_adapter_scale[0, -3:, -3:, -1].flatten()
# forward pass with single ip adapter and masks, but with scale of adapter weights
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(cross_attention_dim)]
inputs["cross_attention_kwargs"] = {"ip_adapter_masks": [self._get_dummy_masks(input_size)]}
pipe.set_ip_adapter_scale(42.0)
output_with_adapter_scale = pipe(**inputs)[0]
output_with_adapter_scale = output_with_adapter_scale[0, -3:, -3:, -1].flatten()
max_diff_without_adapter_scale = np.abs(output_without_adapter_scale - output_without_adapter).max()
max_diff_with_adapter_scale = np.abs(output_with_adapter_scale - output_without_adapter).max()
self.assertLess(
max_diff_without_adapter_scale,
expected_max_diff,
"Output without ip-adapter must be same as normal inference",
)
self.assertGreater(
max_diff_with_adapter_scale, 1e-3, "Output with ip-adapter must be different from normal inference"
)
def test_ip_adapter_faceid(self, expected_max_diff: float = 1e-4):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components).to(torch_device)
pipe.set_progress_bar_config(disable=None)
cross_attention_dim = pipe.unet.config.get("cross_attention_dim", 32)
# forward pass without ip adapter
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
output_without_adapter = pipe(**inputs)[0]
output_without_adapter = output_without_adapter[0, -3:, -3:, -1].flatten()
adapter_state_dict = create_ip_adapter_faceid_state_dict(pipe.unet)
pipe.unet._load_ip_adapter_weights(adapter_state_dict)
# forward pass with single ip adapter, but scale=0 which should have no effect
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
inputs["ip_adapter_image_embeds"] = [self._get_dummy_faceid_image_embeds(cross_attention_dim)]
pipe.set_ip_adapter_scale(0.0)
output_without_adapter_scale = pipe(**inputs)[0]
output_without_adapter_scale = output_without_adapter_scale[0, -3:, -3:, -1].flatten()
# forward pass with single ip adapter, but with scale of adapter weights
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
inputs["ip_adapter_image_embeds"] = [self._get_dummy_faceid_image_embeds(cross_attention_dim)]
pipe.set_ip_adapter_scale(42.0)
output_with_adapter_scale = pipe(**inputs)[0]
output_with_adapter_scale = output_with_adapter_scale[0, -3:, -3:, -1].flatten()
max_diff_without_adapter_scale = np.abs(output_without_adapter_scale - output_without_adapter).max()
max_diff_with_adapter_scale = np.abs(output_with_adapter_scale - output_without_adapter).max()
self.assertLess(
max_diff_without_adapter_scale,
expected_max_diff,
"Output without ip-adapter must be same as normal inference",
)
self.assertGreater(
max_diff_with_adapter_scale, 1e-3, "Output with ip-adapter must be different from normal inference"
)
class FluxIPAdapterTesterMixin:
"""
This mixin is designed to be used with PipelineTesterMixin and unittest.TestCase classes.
It provides a set of common tests for pipelines that support IP Adapters.
"""
def test_pipeline_signature(self):
parameters = inspect.signature(self.pipeline_class.__call__).parameters
assert issubclass(self.pipeline_class, FluxIPAdapterMixin)
self.assertIn(
"ip_adapter_image",
parameters,
"`ip_adapter_image` argument must be supported by the `__call__` method",
)
self.assertIn(
"ip_adapter_image_embeds",
parameters,
"`ip_adapter_image_embeds` argument must be supported by the `__call__` method",
)
def _get_dummy_image_embeds(self, image_embed_dim: int = 768):
return torch.randn((1, 1, image_embed_dim), device=torch_device)
def _modify_inputs_for_ip_adapter_test(self, inputs: Dict[str, Any]):
inputs["negative_prompt"] = ""
inputs["true_cfg_scale"] = 4.0
inputs["output_type"] = "np"
inputs["return_dict"] = False
return inputs
def test_ip_adapter(self, expected_max_diff: float = 1e-4, expected_pipe_slice=None):
r"""Tests for IP-Adapter.
The following scenarios are tested:
- Single IP-Adapter with scale=0 should produce same output as no IP-Adapter.
- Multi IP-Adapter with scale=0 should produce same output as no IP-Adapter.
- Single IP-Adapter with scale!=0 should produce different output compared to no IP-Adapter.
- Multi IP-Adapter with scale!=0 should produce different output compared to no IP-Adapter.
"""
# Raising the tolerance for this test when it's run on a CPU because we
# compare against static slices and that can be shaky (with a VVVV low probability).
expected_max_diff = 9e-4 if torch_device == "cpu" else expected_max_diff
components = self.get_dummy_components()
pipe = self.pipeline_class(**components).to(torch_device)
pipe.set_progress_bar_config(disable=None)
image_embed_dim = pipe.transformer.config.pooled_projection_dim
# forward pass without ip adapter
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
if expected_pipe_slice is None:
output_without_adapter = pipe(**inputs)[0]
else:
output_without_adapter = expected_pipe_slice
# 1. Single IP-Adapter test cases
adapter_state_dict = create_flux_ip_adapter_state_dict(pipe.transformer)
pipe.transformer._load_ip_adapter_weights(adapter_state_dict)
# forward pass with single ip adapter, but scale=0 which should have no effect
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(image_embed_dim)]
inputs["negative_ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(image_embed_dim)]
pipe.set_ip_adapter_scale(0.0)
output_without_adapter_scale = pipe(**inputs)[0]
if expected_pipe_slice is not None:
output_without_adapter_scale = output_without_adapter_scale[0, -3:, -3:, -1].flatten()
# forward pass with single ip adapter, but with scale of adapter weights
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(image_embed_dim)]
inputs["negative_ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(image_embed_dim)]
pipe.set_ip_adapter_scale(42.0)
output_with_adapter_scale = pipe(**inputs)[0]
if expected_pipe_slice is not None:
output_with_adapter_scale = output_with_adapter_scale[0, -3:, -3:, -1].flatten()
max_diff_without_adapter_scale = np.abs(output_without_adapter_scale - output_without_adapter).max()
max_diff_with_adapter_scale = np.abs(output_with_adapter_scale - output_without_adapter).max()
self.assertLess(
max_diff_without_adapter_scale,
expected_max_diff,
"Output without ip-adapter must be same as normal inference",
)
self.assertGreater(
max_diff_with_adapter_scale, 1e-2, "Output with ip-adapter must be different from normal inference"
)
# 2. Multi IP-Adapter test cases
adapter_state_dict_1 = create_flux_ip_adapter_state_dict(pipe.transformer)
adapter_state_dict_2 = create_flux_ip_adapter_state_dict(pipe.transformer)
pipe.transformer._load_ip_adapter_weights([adapter_state_dict_1, adapter_state_dict_2])
# forward pass with multi ip adapter, but scale=0 which should have no effect
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(image_embed_dim)] * 2
inputs["negative_ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(image_embed_dim)] * 2
pipe.set_ip_adapter_scale([0.0, 0.0])
output_without_multi_adapter_scale = pipe(**inputs)[0]
if expected_pipe_slice is not None:
output_without_multi_adapter_scale = output_without_multi_adapter_scale[0, -3:, -3:, -1].flatten()
# forward pass with multi ip adapter, but with scale of adapter weights
inputs = self._modify_inputs_for_ip_adapter_test(self.get_dummy_inputs(torch_device))
inputs["ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(image_embed_dim)] * 2
inputs["negative_ip_adapter_image_embeds"] = [self._get_dummy_image_embeds(image_embed_dim)] * 2
pipe.set_ip_adapter_scale([42.0, 42.0])
output_with_multi_adapter_scale = pipe(**inputs)[0]
if expected_pipe_slice is not None:
output_with_multi_adapter_scale = output_with_multi_adapter_scale[0, -3:, -3:, -1].flatten()
max_diff_without_multi_adapter_scale = np.abs(
output_without_multi_adapter_scale - output_without_adapter
).max()
max_diff_with_multi_adapter_scale = np.abs(output_with_multi_adapter_scale - output_without_adapter).max()
self.assertLess(
max_diff_without_multi_adapter_scale,
expected_max_diff,
"Output without multi-ip-adapter must be same as normal inference",
)
self.assertGreater(
max_diff_with_multi_adapter_scale,
1e-2,
"Output with multi-ip-adapter scale must be different from normal inference",
)
class PipelineLatentTesterMixin:
"""
This mixin is designed to be used with PipelineTesterMixin and unittest.TestCase classes.
It provides a set of common tests for PyTorch pipeline that has vae, e.g.
equivalence of different input and output types, etc.
"""
@property
def image_params(self) -> frozenset:
raise NotImplementedError(
"You need to set the attribute `image_params` in the child test class. "
"`image_params` are tested for if all accepted input image types (i.e. `pt`,`pil`,`np`) are producing same results"
)
@property
def image_latents_params(self) -> frozenset:
raise NotImplementedError(
"You need to set the attribute `image_latents_params` in the child test class. "
"`image_latents_params` are tested for if passing latents directly are producing same results"
)
def get_dummy_inputs_by_type(self, device, seed=0, input_image_type="pt", output_type="np"):
inputs = self.get_dummy_inputs(device, seed)
def convert_to_pt(image):
if isinstance(image, torch.Tensor):
input_image = image
elif isinstance(image, np.ndarray):
input_image = VaeImageProcessor.numpy_to_pt(image)
elif isinstance(image, PIL.Image.Image):
input_image = VaeImageProcessor.pil_to_numpy(image)
input_image = VaeImageProcessor.numpy_to_pt(input_image)
else:
raise ValueError(f"unsupported input_image_type {type(image)}")
return input_image
def convert_pt_to_type(image, input_image_type):
if input_image_type == "pt":
input_image = image
elif input_image_type == "np":
input_image = VaeImageProcessor.pt_to_numpy(image)
elif input_image_type == "pil":
input_image = VaeImageProcessor.pt_to_numpy(image)
input_image = VaeImageProcessor.numpy_to_pil(input_image)
else:
raise ValueError(f"unsupported input_image_type {input_image_type}.")
return input_image
for image_param in self.image_params:
if image_param in inputs.keys():
inputs[image_param] = convert_pt_to_type(
convert_to_pt(inputs[image_param]).to(device), input_image_type
)
inputs["output_type"] = output_type
return inputs
def test_pt_np_pil_outputs_equivalent(self, expected_max_diff=1e-4):
self._test_pt_np_pil_outputs_equivalent(expected_max_diff=expected_max_diff)
def _test_pt_np_pil_outputs_equivalent(self, expected_max_diff=1e-4, input_image_type="pt"):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
output_pt = pipe(
**self.get_dummy_inputs_by_type(torch_device, input_image_type=input_image_type, output_type="pt")
)[0]
output_np = pipe(
**self.get_dummy_inputs_by_type(torch_device, input_image_type=input_image_type, output_type="np")
)[0]
output_pil = pipe(
**self.get_dummy_inputs_by_type(torch_device, input_image_type=input_image_type, output_type="pil")
)[0]
max_diff = np.abs(output_pt.cpu().numpy().transpose(0, 2, 3, 1) - output_np).max()
self.assertLess(
max_diff, expected_max_diff, "`output_type=='pt'` generate different results from `output_type=='np'`"
)
max_diff = np.abs(np.array(output_pil[0]) - (output_np * 255).round()).max()
self.assertLess(max_diff, 2.0, "`output_type=='pil'` generate different results from `output_type=='np'`")
def test_pt_np_pil_inputs_equivalent(self):
if len(self.image_params) == 0:
return
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
out_input_pt = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="pt"))[0]
out_input_np = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="np"))[0]
out_input_pil = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="pil"))[0]
max_diff = np.abs(out_input_pt - out_input_np).max()
self.assertLess(max_diff, 1e-4, "`input_type=='pt'` generate different result from `input_type=='np'`")
max_diff = np.abs(out_input_pil - out_input_np).max()
self.assertLess(max_diff, 1e-2, "`input_type=='pt'` generate different result from `input_type=='np'`")
def test_latents_input(self):
if len(self.image_latents_params) == 0:
return
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.image_processor = VaeImageProcessor(do_resize=False, do_normalize=False)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
out = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="pt"))[0]
vae = components["vae"]
inputs = self.get_dummy_inputs_by_type(torch_device, input_image_type="pt")
generator = inputs["generator"]
for image_param in self.image_latents_params:
if image_param in inputs.keys():
inputs[image_param] = (
vae.encode(inputs[image_param]).latent_dist.sample(generator) * vae.config.scaling_factor
)
out_latents_inputs = pipe(**inputs)[0]
max_diff = np.abs(out - out_latents_inputs).max()
self.assertLess(max_diff, 1e-4, "passing latents as image input generate different result from passing image")
def test_multi_vae(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
block_out_channels = pipe.vae.config.block_out_channels
norm_num_groups = pipe.vae.config.norm_num_groups
vae_classes = [AutoencoderKL, AsymmetricAutoencoderKL, ConsistencyDecoderVAE, AutoencoderTiny]
configs = [
get_autoencoder_kl_config(block_out_channels, norm_num_groups),
get_asym_autoencoder_kl_config(block_out_channels, norm_num_groups),
get_consistency_vae_config(block_out_channels, norm_num_groups),
get_autoencoder_tiny_config(block_out_channels),
]
out_np = pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="np"))[0]
for vae_cls, config in zip(vae_classes, configs):
vae = vae_cls(**config)
vae = vae.to(torch_device)
components["vae"] = vae
vae_pipe = self.pipeline_class(**components)
out_vae_np = vae_pipe(**self.get_dummy_inputs_by_type(torch_device, input_image_type="np"))[0]
assert out_vae_np.shape == out_np.shape
@require_torch
class PipelineFromPipeTesterMixin:
@property
def original_pipeline_class(self):
if "xl" in self.pipeline_class.__name__.lower():
original_pipeline_class = StableDiffusionXLPipeline
elif "kolors" in self.pipeline_class.__name__.lower():
original_pipeline_class = KolorsPipeline
else:
original_pipeline_class = StableDiffusionPipeline
return original_pipeline_class
def get_dummy_inputs_pipe(self, device, seed=0):
inputs = self.get_dummy_inputs(device, seed=seed)
inputs["output_type"] = "np"
inputs["return_dict"] = False
return inputs
def get_dummy_inputs_for_pipe_original(self, device, seed=0):
inputs = {}
for k, v in self.get_dummy_inputs_pipe(device, seed=seed).items():
if k in set(inspect.signature(self.original_pipeline_class.__call__).parameters.keys()):
inputs[k] = v
return inputs
def test_from_pipe_consistent_config(self):
if self.original_pipeline_class == StableDiffusionPipeline:
original_repo = "hf-internal-testing/tiny-stable-diffusion-pipe"
original_kwargs = {"requires_safety_checker": False}
elif self.original_pipeline_class == StableDiffusionXLPipeline:
original_repo = "hf-internal-testing/tiny-stable-diffusion-xl-pipe"
original_kwargs = {"requires_aesthetics_score": True, "force_zeros_for_empty_prompt": False}
elif self.original_pipeline_class == KolorsPipeline:
original_repo = "hf-internal-testing/tiny-kolors-pipe"
original_kwargs = {"force_zeros_for_empty_prompt": False}
else:
raise ValueError(
"original_pipeline_class must be either StableDiffusionPipeline or StableDiffusionXLPipeline"
)
# create original_pipeline_class(sd/sdxl)
pipe_original = self.original_pipeline_class.from_pretrained(original_repo, **original_kwargs)
# original_pipeline_class(sd/sdxl) -> pipeline_class
pipe_components = self.get_dummy_components()
pipe_additional_components = {}
for name, component in pipe_components.items():
if name not in pipe_original.components:
pipe_additional_components[name] = component
pipe = self.pipeline_class.from_pipe(pipe_original, **pipe_additional_components)
# pipeline_class -> original_pipeline_class(sd/sdxl)
original_pipe_additional_components = {}
for name, component in pipe_original.components.items():
if name not in pipe.components or not isinstance(component, pipe.components[name].__class__):
original_pipe_additional_components[name] = component
pipe_original_2 = self.original_pipeline_class.from_pipe(pipe, **original_pipe_additional_components)
# compare the config
original_config = {k: v for k, v in pipe_original.config.items() if not k.startswith("_")}
original_config_2 = {k: v for k, v in pipe_original_2.config.items() if not k.startswith("_")}
assert original_config_2 == original_config
def test_from_pipe_consistent_forward_pass(self, expected_max_diff=1e-3):
components = self.get_dummy_components()
original_expected_modules, _ = self.original_pipeline_class._get_signature_keys(self.original_pipeline_class)
# pipeline components that are also expected to be in the original pipeline
original_pipe_components = {}
# additional components that are not in the pipeline, but expected in the original pipeline
original_pipe_additional_components = {}
# additional components that are in the pipeline, but not expected in the original pipeline
current_pipe_additional_components = {}
for name, component in components.items():
if name in original_expected_modules:
original_pipe_components[name] = component
else:
current_pipe_additional_components[name] = component
for name in original_expected_modules:
if name not in original_pipe_components:
if name in self.original_pipeline_class._optional_components:
original_pipe_additional_components[name] = None
else:
raise ValueError(f"missing required module for {self.original_pipeline_class.__class__}: {name}")
pipe_original = self.original_pipeline_class(**original_pipe_components, **original_pipe_additional_components)
for component in pipe_original.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe_original.to(torch_device)
pipe_original.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs_for_pipe_original(torch_device)
output_original = pipe_original(**inputs)[0]
pipe = self.pipeline_class(**components)
for component in pipe.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs_pipe(torch_device)
output = pipe(**inputs)[0]
pipe_from_original = self.pipeline_class.from_pipe(pipe_original, **current_pipe_additional_components)
pipe_from_original.to(torch_device)
pipe_from_original.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs_pipe(torch_device)
output_from_original = pipe_from_original(**inputs)[0]
max_diff = np.abs(to_np(output) - to_np(output_from_original)).max()
self.assertLess(
max_diff,
expected_max_diff,
"The outputs of the pipelines created with `from_pipe` and `__init__` are different.",
)
inputs = self.get_dummy_inputs_for_pipe_original(torch_device)
output_original_2 = pipe_original(**inputs)[0]
max_diff = np.abs(to_np(output_original) - to_np(output_original_2)).max()
self.assertLess(max_diff, expected_max_diff, "`from_pipe` should not change the output of original pipeline.")
for component in pipe_original.components.values():
if hasattr(component, "attn_processors"):
assert all(type(proc) == AttnProcessor for proc in component.attn_processors.values()), (
"`from_pipe` changed the attention processor in original pipeline."
)
@require_accelerator
@require_accelerate_version_greater("0.14.0")
def test_from_pipe_consistent_forward_pass_cpu_offload(self, expected_max_diff=1e-3):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
for component in pipe.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe.enable_model_cpu_offload(device=torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs_pipe(torch_device)
output = pipe(**inputs)[0]
original_expected_modules, _ = self.original_pipeline_class._get_signature_keys(self.original_pipeline_class)
# pipeline components that are also expected to be in the original pipeline
original_pipe_components = {}
# additional components that are not in the pipeline, but expected in the original pipeline
original_pipe_additional_components = {}
# additional components that are in the pipeline, but not expected in the original pipeline
current_pipe_additional_components = {}
for name, component in components.items():
if name in original_expected_modules:
original_pipe_components[name] = component
else:
current_pipe_additional_components[name] = component
for name in original_expected_modules:
if name not in original_pipe_components:
if name in self.original_pipeline_class._optional_components:
original_pipe_additional_components[name] = None
else:
raise ValueError(f"missing required module for {self.original_pipeline_class.__class__}: {name}")
pipe_original = self.original_pipeline_class(**original_pipe_components, **original_pipe_additional_components)
for component in pipe_original.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe_original.set_progress_bar_config(disable=None)
pipe_from_original = self.pipeline_class.from_pipe(pipe_original, **current_pipe_additional_components)
for component in pipe_from_original.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe_from_original.enable_model_cpu_offload(device=torch_device)
pipe_from_original.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs_pipe(torch_device)
output_from_original = pipe_from_original(**inputs)[0]
max_diff = np.abs(to_np(output) - to_np(output_from_original)).max()
self.assertLess(
max_diff,
expected_max_diff,
"The outputs of the pipelines created with `from_pipe` and `__init__` are different.",
)
@require_torch
class PipelineKarrasSchedulerTesterMixin:
"""
This mixin is designed to be used with unittest.TestCase classes.
It provides a set of common tests for each PyTorch pipeline that makes use of KarrasDiffusionSchedulers
equivalence of dict and tuple outputs, etc.
"""
def test_karras_schedulers_shape(
self, num_inference_steps_for_strength=4, num_inference_steps_for_strength_for_iterations=5
):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
# make sure that PNDM does not need warm-up
pipe.scheduler.register_to_config(skip_prk_steps=True)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
inputs["num_inference_steps"] = 2
if "strength" in inputs:
inputs["num_inference_steps"] = num_inference_steps_for_strength
inputs["strength"] = 0.5
outputs = []
for scheduler_enum in KarrasDiffusionSchedulers:
if "KDPM2" in scheduler_enum.name:
inputs["num_inference_steps"] = num_inference_steps_for_strength_for_iterations
scheduler_cls = getattr(diffusers, scheduler_enum.name)
pipe.scheduler = scheduler_cls.from_config(pipe.scheduler.config)
output = pipe(**inputs)[0]
outputs.append(output)
if "KDPM2" in scheduler_enum.name:
inputs["num_inference_steps"] = 2
assert check_same_shape(outputs)
@require_torch
class PipelineTesterMixin:
"""
This mixin is designed to be used with unittest.TestCase classes.
It provides a set of common tests for each PyTorch pipeline, e.g. saving and loading the pipeline,
equivalence of dict and tuple outputs, etc.
"""
# Canonical parameters that are passed to `__call__` regardless
# of the type of pipeline. They are always optional and have common
# sense default values.
required_optional_params = frozenset(
[
"num_inference_steps",
"num_images_per_prompt",
"generator",
"latents",
"output_type",
"return_dict",
]
)
# set these parameters to False in the child class if the pipeline does not support the corresponding functionality
test_attention_slicing = True
test_xformers_attention = True
test_layerwise_casting = False
test_group_offloading = False
supports_dduf = True
def get_generator(self, seed):
device = torch_device if torch_device != "mps" else "cpu"
generator = torch.Generator(device).manual_seed(seed)
return generator
@property
def pipeline_class(self) -> Union[Callable, DiffusionPipeline]:
raise NotImplementedError(
"You need to set the attribute `pipeline_class = ClassNameOfPipeline` in the child test class. "
"See existing pipeline tests for reference."
)
def get_dummy_components(self):
raise NotImplementedError(
"You need to implement `get_dummy_components(self)` in the child test class. "
"See existing pipeline tests for reference."
)
def get_dummy_inputs(self, device, seed=0):
raise NotImplementedError(
"You need to implement `get_dummy_inputs(self, device, seed)` in the child test class. "
"See existing pipeline tests for reference."
)
@property
def params(self) -> frozenset:
raise NotImplementedError(
"You need to set the attribute `params` in the child test class. "
"`params` are checked for if all values are present in `__call__`'s signature."
" You can set `params` using one of the common set of parameters defined in `pipeline_params.py`"
" e.g., `TEXT_TO_IMAGE_PARAMS` defines the common parameters used in text to "
"image pipelines, including prompts and prompt embedding overrides."
"If your pipeline's set of arguments has minor changes from one of the common sets of arguments, "
"do not make modifications to the existing common sets of arguments. I.e. a text to image pipeline "
"with non-configurable height and width arguments should set the attribute as "
"`params = TEXT_TO_IMAGE_PARAMS - {'height', 'width'}`. "
"See existing pipeline tests for reference."
)
@property
def batch_params(self) -> frozenset:
raise NotImplementedError(
"You need to set the attribute `batch_params` in the child test class. "
"`batch_params` are the parameters required to be batched when passed to the pipeline's "
"`__call__` method. `pipeline_params.py` provides some common sets of parameters such as "
"`TEXT_TO_IMAGE_BATCH_PARAMS`, `IMAGE_VARIATION_BATCH_PARAMS`, etc... If your pipeline's "
"set of batch arguments has minor changes from one of the common sets of batch arguments, "
"do not make modifications to the existing common sets of batch arguments. I.e. a text to "
"image pipeline `negative_prompt` is not batched should set the attribute as "
"`batch_params = TEXT_TO_IMAGE_BATCH_PARAMS - {'negative_prompt'}`. "
"See existing pipeline tests for reference."
)
@property
def callback_cfg_params(self) -> frozenset:
raise NotImplementedError(
"You need to set the attribute `callback_cfg_params` in the child test class that requires to run test_callback_cfg. "
"`callback_cfg_params` are the parameters that needs to be passed to the pipeline's callback "
"function when dynamically adjusting `guidance_scale`. They are variables that require special"
"treatment when `do_classifier_free_guidance` is `True`. `pipeline_params.py` provides some common"
" sets of parameters such as `TEXT_TO_IMAGE_CALLBACK_CFG_PARAMS`. If your pipeline's "
"set of cfg arguments has minor changes from one of the common sets of cfg arguments, "
"do not make modifications to the existing common sets of cfg arguments. I.e. for inpaint pipeline, you "
" need to adjust batch size of `mask` and `masked_image_latents` so should set the attribute as"
"`callback_cfg_params = TEXT_TO_IMAGE_CFG_PARAMS.union({'mask', 'masked_image_latents'})`"
)
def setUp(self):
# clean up the VRAM before each test
super().setUp()
torch.compiler.reset()
gc.collect()
backend_empty_cache(torch_device)
# Skip tests for pipelines that inherit from DeprecatedPipelineMixin
from diffusers.pipelines.pipeline_utils import DeprecatedPipelineMixin
if hasattr(self, "pipeline_class") and issubclass(self.pipeline_class, DeprecatedPipelineMixin):
import pytest
pytest.skip(reason=f"Deprecated Pipeline: {self.pipeline_class.__name__}")
def tearDown(self):
# clean up the VRAM after each test in case of CUDA runtime errors
super().tearDown()
torch.compiler.reset()
gc.collect()
backend_empty_cache(torch_device)
def test_save_load_local(self, expected_max_difference=5e-4):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
for component in pipe.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
output = pipe(**inputs)[0]
logger = logging.get_logger("diffusers.pipelines.pipeline_utils")
logger.setLevel(diffusers.logging.INFO)
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(tmpdir, safe_serialization=False)
with CaptureLogger(logger) as cap_logger:
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
for component in pipe_loaded.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
for name in pipe_loaded.components.keys():
if name not in pipe_loaded._optional_components:
assert name in str(cap_logger)
pipe_loaded.to(torch_device)
pipe_loaded.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
output_loaded = pipe_loaded(**inputs)[0]
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
self.assertLess(max_diff, expected_max_difference)
def test_pipeline_call_signature(self):
self.assertTrue(
hasattr(self.pipeline_class, "__call__"), f"{self.pipeline_class} should have a `__call__` method"
)
parameters = inspect.signature(self.pipeline_class.__call__).parameters
optional_parameters = set()
for k, v in parameters.items():
if v.default != inspect._empty:
optional_parameters.add(k)
parameters = set(parameters.keys())
parameters.remove("self")
parameters.discard("kwargs") # kwargs can be added if arguments of pipeline call function are deprecated
remaining_required_parameters = set()
for param in self.params:
if param not in parameters:
remaining_required_parameters.add(param)
self.assertTrue(
len(remaining_required_parameters) == 0,
f"Required parameters not present: {remaining_required_parameters}",
)
remaining_required_optional_parameters = set()
for param in self.required_optional_params:
if param not in optional_parameters:
remaining_required_optional_parameters.add(param)
self.assertTrue(
len(remaining_required_optional_parameters) == 0,
f"Required optional parameters not present: {remaining_required_optional_parameters}",
)
def test_inference_batch_consistent(self, batch_sizes=[2]):
self._test_inference_batch_consistent(batch_sizes=batch_sizes)
def _test_inference_batch_consistent(
self, batch_sizes=[2], additional_params_copy_to_batched_inputs=["num_inference_steps"], batch_generator=True
):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
inputs["generator"] = self.get_generator(0)
logger = logging.get_logger(pipe.__module__)
logger.setLevel(level=diffusers.logging.FATAL)
# prepare batched inputs
batched_inputs = []
for batch_size in batch_sizes:
batched_input = {}
batched_input.update(inputs)
for name in self.batch_params:
if name not in inputs:
continue
value = inputs[name]
if name == "prompt":
len_prompt = len(value)
# make unequal batch sizes
batched_input[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)]
# make last batch super long
batched_input[name][-1] = 100 * "very long"
else:
batched_input[name] = batch_size * [value]
if batch_generator and "generator" in inputs:
batched_input["generator"] = [self.get_generator(i) for i in range(batch_size)]
if "batch_size" in inputs:
batched_input["batch_size"] = batch_size
batched_inputs.append(batched_input)
logger.setLevel(level=diffusers.logging.WARNING)
for batch_size, batched_input in zip(batch_sizes, batched_inputs):
output = pipe(**batched_input)
assert len(output[0]) == batch_size
def test_inference_batch_single_identical(self, batch_size=3, expected_max_diff=1e-4):
self._test_inference_batch_single_identical(batch_size=batch_size, expected_max_diff=expected_max_diff)
def _test_inference_batch_single_identical(
self,
batch_size=2,
expected_max_diff=1e-4,
additional_params_copy_to_batched_inputs=["num_inference_steps"],
):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
for components in pipe.components.values():
if hasattr(components, "set_default_attn_processor"):
components.set_default_attn_processor()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
# Reset generator in case it is has been used in self.get_dummy_inputs
inputs["generator"] = self.get_generator(0)
logger = logging.get_logger(pipe.__module__)
logger.setLevel(level=diffusers.logging.FATAL)
# batchify inputs
batched_inputs = {}
batched_inputs.update(inputs)
for name in self.batch_params:
if name not in inputs:
continue
value = inputs[name]
if name == "prompt":
len_prompt = len(value)
batched_inputs[name] = [value[: len_prompt // i] for i in range(1, batch_size + 1)]
batched_inputs[name][-1] = 100 * "very long"
else:
batched_inputs[name] = batch_size * [value]
if "generator" in inputs:
batched_inputs["generator"] = [self.get_generator(i) for i in range(batch_size)]
if "batch_size" in inputs:
batched_inputs["batch_size"] = batch_size
for arg in additional_params_copy_to_batched_inputs:
batched_inputs[arg] = inputs[arg]
output = pipe(**inputs)
output_batch = pipe(**batched_inputs)
assert output_batch[0].shape[0] == batch_size
max_diff = np.abs(to_np(output_batch[0][0]) - to_np(output[0][0])).max()
assert max_diff < expected_max_diff
def test_dict_tuple_outputs_equivalent(self, expected_slice=None, expected_max_difference=1e-4):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
for component in pipe.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
generator_device = "cpu"
if expected_slice is None:
output = pipe(**self.get_dummy_inputs(generator_device))[0]
else:
output = expected_slice
output_tuple = pipe(**self.get_dummy_inputs(generator_device), return_dict=False)[0]
if expected_slice is None:
max_diff = np.abs(to_np(output) - to_np(output_tuple)).max()
else:
if output_tuple.ndim != 5:
max_diff = np.abs(to_np(output) - to_np(output_tuple)[0, -3:, -3:, -1].flatten()).max()
else:
max_diff = np.abs(to_np(output) - to_np(output_tuple)[0, -3:, -3:, -1, -1].flatten()).max()
self.assertLess(max_diff, expected_max_difference)
def test_components_function(self):
init_components = self.get_dummy_components()
init_components = {k: v for k, v in init_components.items() if not isinstance(v, (str, int, float))}
pipe = self.pipeline_class(**init_components)
self.assertTrue(hasattr(pipe, "components"))
self.assertTrue(set(pipe.components.keys()) == set(init_components.keys()))
@unittest.skipIf(torch_device not in ["cuda", "xpu"], reason="float16 requires CUDA or XPU")
@require_accelerator
def test_float16_inference(self, expected_max_diff=5e-2):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
for component in pipe.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
components = self.get_dummy_components()
pipe_fp16 = self.pipeline_class(**components)
for component in pipe_fp16.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe_fp16.to(torch_device, torch.float16)
pipe_fp16.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
# Reset generator in case it is used inside dummy inputs
if "generator" in inputs:
inputs["generator"] = self.get_generator(0)
output = pipe(**inputs)[0]
fp16_inputs = self.get_dummy_inputs(torch_device)
# Reset generator in case it is used inside dummy inputs
if "generator" in fp16_inputs:
fp16_inputs["generator"] = self.get_generator(0)
output_fp16 = pipe_fp16(**fp16_inputs)[0]
max_diff = np.abs(to_np(output) - to_np(output_fp16)).max()
self.assertLess(max_diff, expected_max_diff, "The outputs of the fp16 and fp32 pipelines are too different.")
@unittest.skipIf(torch_device not in ["cuda", "xpu"], reason="float16 requires CUDA or XPU")
@require_accelerator
def test_save_load_float16(self, expected_max_diff=1e-2):
components = self.get_dummy_components()
for name, module in components.items():
if hasattr(module, "half"):
components[name] = module.to(torch_device).half()
pipe = self.pipeline_class(**components)
for component in pipe.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
output = pipe(**inputs)[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(tmpdir)
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir, torch_dtype=torch.float16)
for component in pipe_loaded.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe_loaded.to(torch_device)
pipe_loaded.set_progress_bar_config(disable=None)
for name, component in pipe_loaded.components.items():
if hasattr(component, "dtype"):
self.assertTrue(
component.dtype == torch.float16,
f"`{name}.dtype` switched from `float16` to {component.dtype} after loading.",
)
inputs = self.get_dummy_inputs(torch_device)
output_loaded = pipe_loaded(**inputs)[0]
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
self.assertLess(
max_diff, expected_max_diff, "The output of the fp16 pipeline changed after saving and loading."
)
def test_save_load_optional_components(self, expected_max_difference=1e-4):
if not hasattr(self.pipeline_class, "_optional_components"):
return
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
for component in pipe.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
# set all optional components to None
for optional_component in pipe._optional_components:
setattr(pipe, optional_component, None)
generator_device = "cpu"
inputs = self.get_dummy_inputs(generator_device)
torch.manual_seed(0)
output = pipe(**inputs)[0]
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(tmpdir, safe_serialization=False)
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir)
for component in pipe_loaded.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe_loaded.to(torch_device)
pipe_loaded.set_progress_bar_config(disable=None)
for optional_component in pipe._optional_components:
self.assertTrue(
getattr(pipe_loaded, optional_component) is None,
f"`{optional_component}` did not stay set to None after loading.",
)
inputs = self.get_dummy_inputs(generator_device)
torch.manual_seed(0)
output_loaded = pipe_loaded(**inputs)[0]
max_diff = np.abs(to_np(output) - to_np(output_loaded)).max()
self.assertLess(max_diff, expected_max_difference)
@require_accelerator
def test_to_device(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.set_progress_bar_config(disable=None)
pipe.to("cpu")
model_devices = [component.device.type for component in components.values() if hasattr(component, "device")]
self.assertTrue(all(device == "cpu" for device in model_devices))
output_cpu = pipe(**self.get_dummy_inputs("cpu"))[0]
self.assertTrue(np.isnan(output_cpu).sum() == 0)
pipe.to(torch_device)
model_devices = [component.device.type for component in components.values() if hasattr(component, "device")]
self.assertTrue(all(device == torch_device for device in model_devices))
output_device = pipe(**self.get_dummy_inputs(torch_device))[0]
self.assertTrue(np.isnan(to_np(output_device)).sum() == 0)
def test_to_dtype(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.set_progress_bar_config(disable=None)
model_dtypes = [component.dtype for component in components.values() if hasattr(component, "dtype")]
self.assertTrue(all(dtype == torch.float32 for dtype in model_dtypes))
pipe.to(dtype=torch.float16)
model_dtypes = [component.dtype for component in components.values() if hasattr(component, "dtype")]
self.assertTrue(all(dtype == torch.float16 for dtype in model_dtypes))
def test_attention_slicing_forward_pass(self, expected_max_diff=1e-3):
self._test_attention_slicing_forward_pass(expected_max_diff=expected_max_diff)
def _test_attention_slicing_forward_pass(
self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-3
):
if not self.test_attention_slicing:
return
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
for component in pipe.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
generator_device = "cpu"
inputs = self.get_dummy_inputs(generator_device)
output_without_slicing = pipe(**inputs)[0]
pipe.enable_attention_slicing(slice_size=1)
inputs = self.get_dummy_inputs(generator_device)
output_with_slicing1 = pipe(**inputs)[0]
pipe.enable_attention_slicing(slice_size=2)
inputs = self.get_dummy_inputs(generator_device)
output_with_slicing2 = pipe(**inputs)[0]
if test_max_difference:
max_diff1 = np.abs(to_np(output_with_slicing1) - to_np(output_without_slicing)).max()
max_diff2 = np.abs(to_np(output_with_slicing2) - to_np(output_without_slicing)).max()
self.assertLess(
max(max_diff1, max_diff2),
expected_max_diff,
"Attention slicing should not affect the inference results",
)
if test_mean_pixel_difference:
assert_mean_pixel_difference(to_np(output_with_slicing1[0]), to_np(output_without_slicing[0]))
assert_mean_pixel_difference(to_np(output_with_slicing2[0]), to_np(output_without_slicing[0]))
@require_accelerator
@require_accelerate_version_greater("0.14.0")
def test_sequential_cpu_offload_forward_pass(self, expected_max_diff=1e-4):
import accelerate
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
for component in pipe.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
generator_device = "cpu"
inputs = self.get_dummy_inputs(generator_device)
torch.manual_seed(0)
output_without_offload = pipe(**inputs)[0]
pipe.enable_sequential_cpu_offload(device=torch_device)
assert pipe._execution_device.type == torch_device
inputs = self.get_dummy_inputs(generator_device)
torch.manual_seed(0)
output_with_offload = pipe(**inputs)[0]
max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max()
self.assertLess(max_diff, expected_max_diff, "CPU offloading should not affect the inference results")
# make sure all `torch.nn.Module` components (except those in `self._exclude_from_cpu_offload`) are offloaded correctly
offloaded_modules = {
k: v
for k, v in pipe.components.items()
if isinstance(v, torch.nn.Module) and k not in pipe._exclude_from_cpu_offload
}
# 1. all offloaded modules should be saved to cpu and moved to meta device
self.assertTrue(
all(v.device.type == "meta" for v in offloaded_modules.values()),
f"Not offloaded: {[k for k, v in offloaded_modules.items() if v.device.type != 'meta']}",
)
# 2. all offloaded modules should have hook installed
self.assertTrue(
all(hasattr(v, "_hf_hook") for k, v in offloaded_modules.items()),
f"No hook attached: {[k for k, v in offloaded_modules.items() if not hasattr(v, '_hf_hook')]}",
)
# 3. all offloaded modules should have correct hooks installed, should be either one of these two
# - `AlignDevicesHook`
# - a SequentialHook` that contains `AlignDevicesHook`
offloaded_modules_with_incorrect_hooks = {}
for k, v in offloaded_modules.items():
if hasattr(v, "_hf_hook"):
if isinstance(v._hf_hook, accelerate.hooks.SequentialHook):
# if it is a `SequentialHook`, we loop through its `hooks` attribute to check if it only contains `AlignDevicesHook`
for hook in v._hf_hook.hooks:
if not isinstance(hook, accelerate.hooks.AlignDevicesHook):
offloaded_modules_with_incorrect_hooks[k] = type(v._hf_hook.hooks[0])
elif not isinstance(v._hf_hook, accelerate.hooks.AlignDevicesHook):
offloaded_modules_with_incorrect_hooks[k] = type(v._hf_hook)
self.assertTrue(
len(offloaded_modules_with_incorrect_hooks) == 0,
f"Not installed correct hook: {offloaded_modules_with_incorrect_hooks}",
)
@require_accelerator
@require_accelerate_version_greater("0.17.0")
def test_model_cpu_offload_forward_pass(self, expected_max_diff=2e-4):
import accelerate
generator_device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
for component in pipe.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(generator_device)
torch.manual_seed(0)
output_without_offload = pipe(**inputs)[0]
pipe.enable_model_cpu_offload(device=torch_device)
assert pipe._execution_device.type == torch_device
inputs = self.get_dummy_inputs(generator_device)
torch.manual_seed(0)
output_with_offload = pipe(**inputs)[0]
max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max()
self.assertLess(max_diff, expected_max_diff, "CPU offloading should not affect the inference results")
# make sure all `torch.nn.Module` components (except those in `self._exclude_from_cpu_offload`) are offloaded correctly
offloaded_modules = {
k: v
for k, v in pipe.components.items()
if isinstance(v, torch.nn.Module) and k not in pipe._exclude_from_cpu_offload
}
# 1. check if all offloaded modules are saved to cpu
self.assertTrue(
all(v.device.type == "cpu" for v in offloaded_modules.values()),
f"Not offloaded: {[k for k, v in offloaded_modules.items() if v.device.type != 'cpu']}",
)
# 2. check if all offloaded modules have hooks installed
self.assertTrue(
all(hasattr(v, "_hf_hook") for k, v in offloaded_modules.items()),
f"No hook attached: {[k for k, v in offloaded_modules.items() if not hasattr(v, '_hf_hook')]}",
)
# 3. check if all offloaded modules have correct type of hooks installed, should be `CpuOffload`
offloaded_modules_with_incorrect_hooks = {}
for k, v in offloaded_modules.items():
if hasattr(v, "_hf_hook") and not isinstance(v._hf_hook, accelerate.hooks.CpuOffload):
offloaded_modules_with_incorrect_hooks[k] = type(v._hf_hook)
self.assertTrue(
len(offloaded_modules_with_incorrect_hooks) == 0,
f"Not installed correct hook: {offloaded_modules_with_incorrect_hooks}",
)
@require_accelerator
@require_accelerate_version_greater("0.17.0")
def test_cpu_offload_forward_pass_twice(self, expected_max_diff=2e-4):
import accelerate
generator_device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
for component in pipe.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe.set_progress_bar_config(disable=None)
pipe.enable_model_cpu_offload()
inputs = self.get_dummy_inputs(generator_device)
output_with_offload = pipe(**inputs)[0]
pipe.enable_model_cpu_offload()
inputs = self.get_dummy_inputs(generator_device)
output_with_offload_twice = pipe(**inputs)[0]
max_diff = np.abs(to_np(output_with_offload) - to_np(output_with_offload_twice)).max()
self.assertLess(
max_diff, expected_max_diff, "running CPU offloading 2nd time should not affect the inference results"
)
# make sure all `torch.nn.Module` components (except those in `self._exclude_from_cpu_offload`) are offloaded correctly
offloaded_modules = {
k: v
for k, v in pipe.components.items()
if isinstance(v, torch.nn.Module) and k not in pipe._exclude_from_cpu_offload
}
# 1. check if all offloaded modules are saved to cpu
self.assertTrue(
all(v.device.type == "cpu" for v in offloaded_modules.values()),
f"Not offloaded: {[k for k, v in offloaded_modules.items() if v.device.type != 'cpu']}",
)
# 2. check if all offloaded modules have hooks installed
self.assertTrue(
all(hasattr(v, "_hf_hook") for k, v in offloaded_modules.items()),
f"No hook attached: {[k for k, v in offloaded_modules.items() if not hasattr(v, '_hf_hook')]}",
)
# 3. check if all offloaded modules have correct type of hooks installed, should be `CpuOffload`
offloaded_modules_with_incorrect_hooks = {}
for k, v in offloaded_modules.items():
if hasattr(v, "_hf_hook") and not isinstance(v._hf_hook, accelerate.hooks.CpuOffload):
offloaded_modules_with_incorrect_hooks[k] = type(v._hf_hook)
self.assertTrue(
len(offloaded_modules_with_incorrect_hooks) == 0,
f"Not installed correct hook: {offloaded_modules_with_incorrect_hooks}",
)
@require_accelerator
@require_accelerate_version_greater("0.14.0")
def test_sequential_offload_forward_pass_twice(self, expected_max_diff=2e-4):
import accelerate
generator_device = "cpu"
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
for component in pipe.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe.set_progress_bar_config(disable=None)
pipe.enable_sequential_cpu_offload(device=torch_device)
inputs = self.get_dummy_inputs(generator_device)
output_with_offload = pipe(**inputs)[0]
pipe.enable_sequential_cpu_offload(device=torch_device)
inputs = self.get_dummy_inputs(generator_device)
output_with_offload_twice = pipe(**inputs)[0]
max_diff = np.abs(to_np(output_with_offload) - to_np(output_with_offload_twice)).max()
self.assertLess(
max_diff, expected_max_diff, "running sequential offloading second time should have the inference results"
)
# make sure all `torch.nn.Module` components (except those in `self._exclude_from_cpu_offload`) are offloaded correctly
offloaded_modules = {
k: v
for k, v in pipe.components.items()
if isinstance(v, torch.nn.Module) and k not in pipe._exclude_from_cpu_offload
}
# 1. check if all offloaded modules are moved to meta device
self.assertTrue(
all(v.device.type == "meta" for v in offloaded_modules.values()),
f"Not offloaded: {[k for k, v in offloaded_modules.items() if v.device.type != 'meta']}",
)
# 2. check if all offloaded modules have hook installed
self.assertTrue(
all(hasattr(v, "_hf_hook") for k, v in offloaded_modules.items()),
f"No hook attached: {[k for k, v in offloaded_modules.items() if not hasattr(v, '_hf_hook')]}",
)
# 3. check if all offloaded modules have correct hooks installed, should be either one of these two
# - `AlignDevicesHook`
# - a SequentialHook` that contains `AlignDevicesHook`
offloaded_modules_with_incorrect_hooks = {}
for k, v in offloaded_modules.items():
if hasattr(v, "_hf_hook"):
if isinstance(v._hf_hook, accelerate.hooks.SequentialHook):
# if it is a `SequentialHook`, we loop through its `hooks` attribute to check if it only contains `AlignDevicesHook`
for hook in v._hf_hook.hooks:
if not isinstance(hook, accelerate.hooks.AlignDevicesHook):
offloaded_modules_with_incorrect_hooks[k] = type(v._hf_hook.hooks[0])
elif not isinstance(v._hf_hook, accelerate.hooks.AlignDevicesHook):
offloaded_modules_with_incorrect_hooks[k] = type(v._hf_hook)
self.assertTrue(
len(offloaded_modules_with_incorrect_hooks) == 0,
f"Not installed correct hook: {offloaded_modules_with_incorrect_hooks}",
)
@unittest.skipIf(
torch_device != "cuda" or not is_xformers_available(),
reason="XFormers attention is only available with CUDA and `xformers` installed",
)
def test_xformers_attention_forwardGenerator_pass(self):
self._test_xformers_attention_forwardGenerator_pass()
def _test_xformers_attention_forwardGenerator_pass(
self, test_max_difference=True, test_mean_pixel_difference=True, expected_max_diff=1e-4
):
if not self.test_xformers_attention:
return
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
for component in pipe.components.values():
if hasattr(component, "set_default_attn_processor"):
component.set_default_attn_processor()
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
output_without_offload = pipe(**inputs)[0]
output_without_offload = (
output_without_offload.cpu() if torch.is_tensor(output_without_offload) else output_without_offload
)
pipe.enable_xformers_memory_efficient_attention()
inputs = self.get_dummy_inputs(torch_device)
output_with_offload = pipe(**inputs)[0]
output_with_offload = (
output_with_offload.cpu() if torch.is_tensor(output_with_offload) else output_without_offload
)
if test_max_difference:
max_diff = np.abs(to_np(output_with_offload) - to_np(output_without_offload)).max()
self.assertLess(max_diff, expected_max_diff, "XFormers attention should not affect the inference results")
if test_mean_pixel_difference:
assert_mean_pixel_difference(output_with_offload[0], output_without_offload[0])
def test_num_images_per_prompt(self):
sig = inspect.signature(self.pipeline_class.__call__)
if "num_images_per_prompt" not in sig.parameters:
return
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
batch_sizes = [1, 2]
num_images_per_prompts = [1, 2]
for batch_size in batch_sizes:
for num_images_per_prompt in num_images_per_prompts:
inputs = self.get_dummy_inputs(torch_device)
for key in inputs.keys():
if key in self.batch_params:
inputs[key] = batch_size * [inputs[key]]
images = pipe(**inputs, num_images_per_prompt=num_images_per_prompt)[0]
assert images.shape[0] == batch_size * num_images_per_prompt
def test_cfg(self):
sig = inspect.signature(self.pipeline_class.__call__)
if "guidance_scale" not in sig.parameters:
return
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(torch_device)
inputs["guidance_scale"] = 1.0
out_no_cfg = pipe(**inputs)[0]
inputs["guidance_scale"] = 7.5
out_cfg = pipe(**inputs)[0]
assert out_cfg.shape == out_no_cfg.shape
def test_callback_inputs(self):
sig = inspect.signature(self.pipeline_class.__call__)
has_callback_tensor_inputs = "callback_on_step_end_tensor_inputs" in sig.parameters
has_callback_step_end = "callback_on_step_end" in sig.parameters
if not (has_callback_tensor_inputs and has_callback_step_end):
return
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
self.assertTrue(
hasattr(pipe, "_callback_tensor_inputs"),
f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs",
)
def callback_inputs_subset(pipe, i, t, callback_kwargs):
# iterate over callback args
for tensor_name, tensor_value in callback_kwargs.items():
# check that we're only passing in allowed tensor inputs
assert tensor_name in pipe._callback_tensor_inputs
return callback_kwargs
def callback_inputs_all(pipe, i, t, callback_kwargs):
for tensor_name in pipe._callback_tensor_inputs:
assert tensor_name in callback_kwargs
# iterate over callback args
for tensor_name, tensor_value in callback_kwargs.items():
# check that we're only passing in allowed tensor inputs
assert tensor_name in pipe._callback_tensor_inputs
return callback_kwargs
inputs = self.get_dummy_inputs(torch_device)
# Test passing in a subset
inputs["callback_on_step_end"] = callback_inputs_subset
inputs["callback_on_step_end_tensor_inputs"] = ["latents"]
inputs["output_type"] = "latent"
output = pipe(**inputs)[0]
# Test passing in a everything
inputs["callback_on_step_end"] = callback_inputs_all
inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs
inputs["output_type"] = "latent"
output = pipe(**inputs)[0]
def callback_inputs_change_tensor(pipe, i, t, callback_kwargs):
is_last = i == (pipe.num_timesteps - 1)
if is_last:
callback_kwargs["latents"] = torch.zeros_like(callback_kwargs["latents"])
return callback_kwargs
inputs["callback_on_step_end"] = callback_inputs_change_tensor
inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs
inputs["output_type"] = "latent"
output = pipe(**inputs)[0]
assert output.abs().sum() == 0
def test_callback_cfg(self):
sig = inspect.signature(self.pipeline_class.__call__)
has_callback_tensor_inputs = "callback_on_step_end_tensor_inputs" in sig.parameters
has_callback_step_end = "callback_on_step_end" in sig.parameters
if not (has_callback_tensor_inputs and has_callback_step_end):
return
if "guidance_scale" not in sig.parameters:
return
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
self.assertTrue(
hasattr(pipe, "_callback_tensor_inputs"),
f" {self.pipeline_class} should have `_callback_tensor_inputs` that defines a list of tensor variables its callback function can use as inputs",
)
def callback_increase_guidance(pipe, i, t, callback_kwargs):
pipe._guidance_scale += 1.0
return callback_kwargs
inputs = self.get_dummy_inputs(torch_device)
# use cfg guidance because some pipelines modify the shape of the latents
# outside of the denoising loop
inputs["guidance_scale"] = 2.0
inputs["callback_on_step_end"] = callback_increase_guidance
inputs["callback_on_step_end_tensor_inputs"] = pipe._callback_tensor_inputs
_ = pipe(**inputs)[0]
# we increase the guidance scale by 1.0 at every step
# check that the guidance scale is increased by the number of scheduler timesteps
# accounts for models that modify the number of inference steps based on strength
assert pipe.guidance_scale == (inputs["guidance_scale"] + pipe.num_timesteps)
def test_serialization_with_variants(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
model_components = [
component_name for component_name, component in pipe.components.items() if isinstance(component, nn.Module)
]
variant = "fp16"
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(tmpdir, variant=variant, safe_serialization=False)
with open(f"{tmpdir}/model_index.json", "r") as f:
config = json.load(f)
for subfolder in os.listdir(tmpdir):
if not os.path.isfile(subfolder) and subfolder in model_components:
folder_path = os.path.join(tmpdir, subfolder)
is_folder = os.path.isdir(folder_path) and subfolder in config
assert is_folder and any(p.split(".")[1].startswith(variant) for p in os.listdir(folder_path))
def test_loading_with_variants(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
variant = "fp16"
def is_nan(tensor):
if tensor.ndimension() == 0:
has_nan = torch.isnan(tensor).item()
else:
has_nan = torch.isnan(tensor).any()
return has_nan
with tempfile.TemporaryDirectory() as tmpdir:
pipe.save_pretrained(tmpdir, variant=variant, safe_serialization=False)
pipe_loaded = self.pipeline_class.from_pretrained(tmpdir, variant=variant)
model_components_pipe = {
component_name: component
for component_name, component in pipe.components.items()
if isinstance(component, nn.Module)
}
model_components_pipe_loaded = {
component_name: component
for component_name, component in pipe_loaded.components.items()
if isinstance(component, nn.Module)
}
for component_name in model_components_pipe:
pipe_component = model_components_pipe[component_name]
pipe_loaded_component = model_components_pipe_loaded[component_name]
for p1, p2 in zip(pipe_component.parameters(), pipe_loaded_component.parameters()):
# nan check for luminanext (mps).
if not (is_nan(p1) and is_nan(p2)):
self.assertTrue(torch.equal(p1, p2))
def test_loading_with_incorrect_variants_raises_error(self):
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
variant = "fp16"
with tempfile.TemporaryDirectory() as tmpdir:
# Don't save with variants.
pipe.save_pretrained(tmpdir, safe_serialization=False)
with self.assertRaises(ValueError) as error:
_ = self.pipeline_class.from_pretrained(tmpdir, variant=variant)
assert f"You are trying to load the model files of the `variant={variant}`" in str(error.exception)
def test_encode_prompt_works_in_isolation(self, extra_required_param_value_dict=None, atol=1e-4, rtol=1e-4):
if not hasattr(self.pipeline_class, "encode_prompt"):
return
components = self.get_dummy_components()
# We initialize the pipeline with only text encoders and tokenizers,
# mimicking a real-world scenario.
components_with_text_encoders = {}
for k in components:
if "text" in k or "tokenizer" in k:
components_with_text_encoders[k] = components[k]
else:
components_with_text_encoders[k] = None
pipe_with_just_text_encoder = self.pipeline_class(**components_with_text_encoders)
pipe_with_just_text_encoder = pipe_with_just_text_encoder.to(torch_device)
# Get inputs and also the args of `encode_prompts`.
inputs = self.get_dummy_inputs(torch_device)
encode_prompt_signature = inspect.signature(pipe_with_just_text_encoder.encode_prompt)
encode_prompt_parameters = list(encode_prompt_signature.parameters.values())
# Required args in encode_prompt with those with no default.
required_params = []
for param in encode_prompt_parameters:
if param.name == "self" or param.name == "kwargs":
continue
if param.default is inspect.Parameter.empty:
required_params.append(param.name)
# Craft inputs for the `encode_prompt()` method to run in isolation.
encode_prompt_param_names = [p.name for p in encode_prompt_parameters if p.name != "self"]
input_keys = list(inputs.keys())
encode_prompt_inputs = {k: inputs.pop(k) for k in input_keys if k in encode_prompt_param_names}
pipe_call_signature = inspect.signature(pipe_with_just_text_encoder.__call__)
pipe_call_parameters = pipe_call_signature.parameters
# For each required arg in encode_prompt, check if it's missing
# in encode_prompt_inputs. If so, see if __call__ has a default
# for that arg and use it if available.
for required_param_name in required_params:
if required_param_name not in encode_prompt_inputs:
pipe_call_param = pipe_call_parameters.get(required_param_name, None)
if pipe_call_param is not None and pipe_call_param.default is not inspect.Parameter.empty:
# Use the default from pipe.__call__
encode_prompt_inputs[required_param_name] = pipe_call_param.default
elif extra_required_param_value_dict is not None and isinstance(extra_required_param_value_dict, dict):
encode_prompt_inputs[required_param_name] = extra_required_param_value_dict[required_param_name]
else:
raise ValueError(
f"Required parameter '{required_param_name}' in "
f"encode_prompt has no default in either encode_prompt or __call__."
)
# Compute `encode_prompt()`.
with torch.no_grad():
encoded_prompt_outputs = pipe_with_just_text_encoder.encode_prompt(**encode_prompt_inputs)
# Programmatically determine the return names of `encode_prompt.`
ast_visitor = ReturnNameVisitor()
encode_prompt_tree = ast_visitor.get_ast_tree(cls=self.pipeline_class)
ast_visitor.visit(encode_prompt_tree)
prompt_embed_kwargs = ast_visitor.return_names
prompt_embeds_kwargs = dict(zip(prompt_embed_kwargs, encoded_prompt_outputs))
# Pack the outputs of `encode_prompt`.
adapted_prompt_embeds_kwargs = {
k: prompt_embeds_kwargs.pop(k) for k in list(prompt_embeds_kwargs.keys()) if k in pipe_call_parameters
}
# now initialize a pipeline without text encoders and compute outputs with the
# `encode_prompt()` outputs and other relevant inputs.
components_with_text_encoders = {}
for k in components:
if "text" in k or "tokenizer" in k:
components_with_text_encoders[k] = None
else:
components_with_text_encoders[k] = components[k]
pipe_without_text_encoders = self.pipeline_class(**components_with_text_encoders).to(torch_device)
# Set `negative_prompt` to None as we have already calculated its embeds
# if it was present in `inputs`. This is because otherwise we will interfere wrongly
# for non-None `negative_prompt` values as defaults (PixArt for example).
pipe_without_tes_inputs = {**inputs, **adapted_prompt_embeds_kwargs}
if (
pipe_call_parameters.get("negative_prompt", None) is not None
and pipe_call_parameters.get("negative_prompt").default is not None
):
pipe_without_tes_inputs.update({"negative_prompt": None})
# Pipelines like attend and excite have `prompt` as a required argument.
if (
pipe_call_parameters.get("prompt", None) is not None
and pipe_call_parameters.get("prompt").default is inspect.Parameter.empty
and pipe_call_parameters.get("prompt_embeds", None) is not None
and pipe_call_parameters.get("prompt_embeds").default is None
):
pipe_without_tes_inputs.update({"prompt": None})
pipe_out = pipe_without_text_encoders(**pipe_without_tes_inputs)[0]
# Compare against regular pipeline outputs.
full_pipe = self.pipeline_class(**components).to(torch_device)
inputs = self.get_dummy_inputs(torch_device)
pipe_out_2 = full_pipe(**inputs)[0]
if isinstance(pipe_out, np.ndarray) and isinstance(pipe_out_2, np.ndarray):
self.assertTrue(np.allclose(pipe_out, pipe_out_2, atol=atol, rtol=rtol))
elif isinstance(pipe_out, torch.Tensor) and isinstance(pipe_out_2, torch.Tensor):
self.assertTrue(torch.allclose(pipe_out, pipe_out_2, atol=atol, rtol=rtol))
def test_StableDiffusionMixin_component(self):
"""Any pipeline that have LDMFuncMixin should have vae and unet components."""
if not issubclass(self.pipeline_class, StableDiffusionMixin):
return
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
self.assertTrue(hasattr(pipe, "vae") and isinstance(pipe.vae, (AutoencoderKL, AutoencoderTiny)))
self.assertTrue(
hasattr(pipe, "unet")
and isinstance(
pipe.unet,
(UNet2DConditionModel, UNet3DConditionModel, I2VGenXLUNet, UNetMotionModel, UNetControlNetXSModel),
)
)
@require_hf_hub_version_greater("0.26.5")
@require_transformers_version_greater("4.47.1")
def test_save_load_dduf(self, atol=1e-4, rtol=1e-4):
if not self.supports_dduf:
return
from huggingface_hub import export_folder_as_dduf
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe = pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
inputs = self.get_dummy_inputs(device="cpu")
inputs.pop("generator")
inputs["generator"] = torch.manual_seed(0)
pipeline_out = pipe(**inputs)[0]
with tempfile.TemporaryDirectory() as tmpdir:
dduf_filename = os.path.join(tmpdir, f"{pipe.__class__.__name__.lower()}.dduf")
pipe.save_pretrained(tmpdir, safe_serialization=True)
export_folder_as_dduf(dduf_filename, folder_path=tmpdir)
loaded_pipe = self.pipeline_class.from_pretrained(tmpdir, dduf_file=dduf_filename).to(torch_device)
inputs["generator"] = torch.manual_seed(0)
loaded_pipeline_out = loaded_pipe(**inputs)[0]
if isinstance(pipeline_out, np.ndarray) and isinstance(loaded_pipeline_out, np.ndarray):
assert np.allclose(pipeline_out, loaded_pipeline_out, atol=atol, rtol=rtol)
elif isinstance(pipeline_out, torch.Tensor) and isinstance(loaded_pipeline_out, torch.Tensor):
assert torch.allclose(pipeline_out, loaded_pipeline_out, atol=atol, rtol=rtol)
def test_layerwise_casting_inference(self):
if not self.test_layerwise_casting:
return
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.to(torch_device, dtype=torch.bfloat16)
pipe.set_progress_bar_config(disable=None)
denoiser = pipe.transformer if hasattr(pipe, "transformer") else pipe.unet
denoiser.enable_layerwise_casting(storage_dtype=torch.float8_e4m3fn, compute_dtype=torch.bfloat16)
inputs = self.get_dummy_inputs(torch_device)
_ = pipe(**inputs)[0]
@require_torch_accelerator
def test_group_offloading_inference(self):
if not self.test_group_offloading:
return
def create_pipe():
torch.manual_seed(0)
components = self.get_dummy_components()
pipe = self.pipeline_class(**components)
pipe.set_progress_bar_config(disable=None)
return pipe
def enable_group_offload_on_component(pipe, group_offloading_kwargs):
# We intentionally don't test VAE's here. This is because some tests enable tiling on the VAE. If
# tiling is enabled and a forward pass is run, when accelerator streams are used, the execution order of
# the layers is not traced correctly. This causes errors. For apply group offloading to VAE, a
# warmup forward pass (even with dummy small inputs) is recommended.
for component_name in [
"text_encoder",
"text_encoder_2",
"text_encoder_3",
"transformer",
"unet",
"controlnet",
]:
if not hasattr(pipe, component_name):
continue
component = getattr(pipe, component_name)
if not getattr(component, "_supports_group_offloading", True):
continue
if hasattr(component, "enable_group_offload"):
# For diffusers ModelMixin implementations
component.enable_group_offload(torch.device(torch_device), **group_offloading_kwargs)
else:
# For other models not part of diffusers
apply_group_offloading(
component, onload_device=torch.device(torch_device), **group_offloading_kwargs
)
self.assertTrue(
all(
module._diffusers_hook.get_hook("group_offloading") is not None
for module in component.modules()
if hasattr(module, "_diffusers_hook")
)
)
for component_name in ["vae", "vqvae"]:
if hasattr(pipe, component_name):
getattr(pipe, component_name).to(torch_device)
def run_forward(pipe):
torch.manual_seed(0)
inputs = self.get_dummy_inputs(torch_device)
return pipe(**inputs)[0]
pipe = create_pipe().to(torch_device)
output_without_group_offloading = run_forward(pipe)
pipe = create_pipe()
enable_group_offload_on_component(pipe, {"offload_type": "block_level", "num_blocks_per_group": 1})
output_with_group_offloading1 = run_forward(pipe)
pipe = create_pipe()
enable_group_offload_on_component(pipe, {"offload_type": "leaf_level"})
output_with_group_offloading2 = run_forward(pipe)
if torch.is_tensor(output_without_group_offloading):
output_without_group_offloading = output_without_group_offloading.detach().cpu().numpy()
output_with_group_offloading1 = output_with_group_offloading1.detach().cpu().numpy()
output_with_group_offloading2 = output_with_group_offloading2.detach().cpu().numpy()
self.assertTrue(np.allclose(output_without_group_offloading, output_with_group_offloading1, atol=1e-4))
self.assertTrue(np.allclose(output_without_group_offloading, output_with_group_offloading2, atol=1e-4))
def test_torch_dtype_dict(self):
components = self.get_dummy_components()
if not components:
self.skipTest("No dummy components defined.")
pipe = self.pipeline_class(**components)
specified_key = next(iter(components.keys()))
with tempfile.TemporaryDirectory(ignore_cleanup_errors=True) as tmpdirname:
pipe.save_pretrained(tmpdirname, safe_serialization=False)
torch_dtype_dict = {specified_key: torch.bfloat16, "default": torch.float16}
loaded_pipe = self.pipeline_class.from_pretrained(tmpdirname, torch_dtype=torch_dtype_dict)
for name, component in loaded_pipe.components.items():
if isinstance(component, torch.nn.Module) and hasattr(component, "dtype"):
expected_dtype = torch_dtype_dict.get(name, torch_dtype_dict.get("default", torch.float32))
self.assertEqual(
component.dtype,
expected_dtype,
f"Component '{name}' has dtype {component.dtype} but expected {expected_dtype}",
)
@is_staging_test
class PipelinePushToHubTester(unittest.TestCase):
identifier = uuid.uuid4()
repo_id = f"test-pipeline-{identifier}"
org_repo_id = f"valid_org/{repo_id}-org"
def get_pipeline_components(self):
unet = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
scheduler = DDIMScheduler(
beta_start=0.00085,
beta_end=0.012,
beta_schedule="scaled_linear",
clip_sample=False,
set_alpha_to_one=False,
)
vae = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
text_encoder_config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
text_encoder = CLIPTextModel(text_encoder_config)
with tempfile.TemporaryDirectory() as tmpdir:
dummy_vocab = {"<|startoftext|>": 0, "<|endoftext|>": 1, "!": 2}
vocab_path = os.path.join(tmpdir, "vocab.json")
with open(vocab_path, "w") as f:
json.dump(dummy_vocab, f)
merges = "Ġ t\nĠt h"
merges_path = os.path.join(tmpdir, "merges.txt")
with open(merges_path, "w") as f:
f.writelines(merges)
tokenizer = CLIPTokenizer(vocab_file=vocab_path, merges_file=merges_path)
components = {
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": text_encoder,
"tokenizer": tokenizer,
"safety_checker": None,
"feature_extractor": None,
}
return components
def test_push_to_hub(self):
components = self.get_pipeline_components()
pipeline = StableDiffusionPipeline(**components)
pipeline.push_to_hub(self.repo_id, token=TOKEN)
new_model = UNet2DConditionModel.from_pretrained(f"{USER}/{self.repo_id}", subfolder="unet")
unet = components["unet"]
for p1, p2 in zip(unet.parameters(), new_model.parameters()):
self.assertTrue(torch.equal(p1, p2))
# Reset repo
delete_repo(token=TOKEN, repo_id=self.repo_id)
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
pipeline.save_pretrained(tmp_dir, repo_id=self.repo_id, push_to_hub=True, token=TOKEN)
new_model = UNet2DConditionModel.from_pretrained(f"{USER}/{self.repo_id}", subfolder="unet")
for p1, p2 in zip(unet.parameters(), new_model.parameters()):
self.assertTrue(torch.equal(p1, p2))
# Reset repo
delete_repo(self.repo_id, token=TOKEN)
def test_push_to_hub_in_organization(self):
components = self.get_pipeline_components()
pipeline = StableDiffusionPipeline(**components)
pipeline.push_to_hub(self.org_repo_id, token=TOKEN)
new_model = UNet2DConditionModel.from_pretrained(self.org_repo_id, subfolder="unet")
unet = components["unet"]
for p1, p2 in zip(unet.parameters(), new_model.parameters()):
self.assertTrue(torch.equal(p1, p2))
# Reset repo
delete_repo(token=TOKEN, repo_id=self.org_repo_id)
# Push to hub via save_pretrained
with tempfile.TemporaryDirectory() as tmp_dir:
pipeline.save_pretrained(tmp_dir, push_to_hub=True, token=TOKEN, repo_id=self.org_repo_id)
new_model = UNet2DConditionModel.from_pretrained(self.org_repo_id, subfolder="unet")
for p1, p2 in zip(unet.parameters(), new_model.parameters()):
self.assertTrue(torch.equal(p1, p2))
# Reset repo
delete_repo(self.org_repo_id, token=TOKEN)
@unittest.skipIf(
not is_jinja_available(),
reason="Model card tests cannot be performed without Jinja installed.",
)
def test_push_to_hub_library_name(self):
components = self.get_pipeline_components()
pipeline = StableDiffusionPipeline(**components)
pipeline.push_to_hub(self.repo_id, token=TOKEN)
model_card = ModelCard.load(f"{USER}/{self.repo_id}", token=TOKEN).data
assert model_card.library_name == "diffusers"
# Reset repo
delete_repo(self.repo_id, token=TOKEN)
class PyramidAttentionBroadcastTesterMixin:
pab_config = PyramidAttentionBroadcastConfig(
spatial_attention_block_skip_range=2,
spatial_attention_timestep_skip_range=(100, 800),
spatial_attention_block_identifiers=["transformer_blocks"],
)
def test_pyramid_attention_broadcast_layers(self):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
num_layers = 0
num_single_layers = 0
dummy_component_kwargs = {}
dummy_component_parameters = inspect.signature(self.get_dummy_components).parameters
if "num_layers" in dummy_component_parameters:
num_layers = 2
dummy_component_kwargs["num_layers"] = num_layers
if "num_single_layers" in dummy_component_parameters:
num_single_layers = 2
dummy_component_kwargs["num_single_layers"] = num_single_layers
components = self.get_dummy_components(**dummy_component_kwargs)
pipe = self.pipeline_class(**components)
pipe.set_progress_bar_config(disable=None)
self.pab_config.current_timestep_callback = lambda: pipe.current_timestep
denoiser = pipe.transformer if hasattr(pipe, "transformer") else pipe.unet
denoiser.enable_cache(self.pab_config)
expected_hooks = 0
if self.pab_config.spatial_attention_block_skip_range is not None:
expected_hooks += num_layers + num_single_layers
if self.pab_config.temporal_attention_block_skip_range is not None:
expected_hooks += num_layers + num_single_layers
if self.pab_config.cross_attention_block_skip_range is not None:
expected_hooks += num_layers + num_single_layers
denoiser = pipe.transformer if hasattr(pipe, "transformer") else pipe.unet
count = 0
for module in denoiser.modules():
if hasattr(module, "_diffusers_hook"):
hook = module._diffusers_hook.get_hook("pyramid_attention_broadcast")
if hook is None:
continue
count += 1
self.assertTrue(
isinstance(hook, PyramidAttentionBroadcastHook),
"Hook should be of type PyramidAttentionBroadcastHook.",
)
self.assertTrue(hook.state.cache is None, "Cache should be None at initialization.")
self.assertEqual(count, expected_hooks, "Number of hooks should match the expected number.")
# Perform dummy inference step to ensure state is updated
def pab_state_check_callback(pipe, i, t, kwargs):
for module in denoiser.modules():
if hasattr(module, "_diffusers_hook"):
hook = module._diffusers_hook.get_hook("pyramid_attention_broadcast")
if hook is None:
continue
self.assertTrue(
hook.state.cache is not None,
"Cache should have updated during inference.",
)
self.assertTrue(
hook.state.iteration == i + 1,
"Hook iteration state should have updated during inference.",
)
return {}
inputs = self.get_dummy_inputs(device)
inputs["num_inference_steps"] = 2
inputs["callback_on_step_end"] = pab_state_check_callback
pipe(**inputs)[0]
# After inference, reset_stateful_hooks is called within the pipeline, which should have reset the states
for module in denoiser.modules():
if hasattr(module, "_diffusers_hook"):
hook = module._diffusers_hook.get_hook("pyramid_attention_broadcast")
if hook is None:
continue
self.assertTrue(
hook.state.cache is None,
"Cache should be reset to None after inference.",
)
self.assertTrue(
hook.state.iteration == 0,
"Iteration should be reset to 0 after inference.",
)
def test_pyramid_attention_broadcast_inference(self, expected_atol: float = 0.2):
# We need to use higher tolerance because we are using a random model. With a converged/trained
# model, the tolerance can be lower.
device = "cpu" # ensure determinism for the device-dependent torch.Generator
num_layers = 2
components = self.get_dummy_components(num_layers=num_layers)
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
# Run inference without PAB
inputs = self.get_dummy_inputs(device)
inputs["num_inference_steps"] = 4
output = pipe(**inputs)[0]
original_image_slice = output.flatten()
original_image_slice = np.concatenate((original_image_slice[:8], original_image_slice[-8:]))
# Run inference with PAB enabled
self.pab_config.current_timestep_callback = lambda: pipe.current_timestep
denoiser = pipe.transformer if hasattr(pipe, "transformer") else pipe.unet
denoiser.enable_cache(self.pab_config)
inputs = self.get_dummy_inputs(device)
inputs["num_inference_steps"] = 4
output = pipe(**inputs)[0]
image_slice_pab_enabled = output.flatten()
image_slice_pab_enabled = np.concatenate((image_slice_pab_enabled[:8], image_slice_pab_enabled[-8:]))
# Run inference with PAB disabled
denoiser.disable_cache()
inputs = self.get_dummy_inputs(device)
inputs["num_inference_steps"] = 4
output = pipe(**inputs)[0]
image_slice_pab_disabled = output.flatten()
image_slice_pab_disabled = np.concatenate((image_slice_pab_disabled[:8], image_slice_pab_disabled[-8:]))
assert np.allclose(original_image_slice, image_slice_pab_enabled, atol=expected_atol), (
"PAB outputs should not differ much in specified timestep range."
)
assert np.allclose(original_image_slice, image_slice_pab_disabled, atol=1e-4), (
"Outputs from normal inference and after disabling cache should not differ."
)
class FasterCacheTesterMixin:
faster_cache_config = FasterCacheConfig(
spatial_attention_block_skip_range=2,
spatial_attention_timestep_skip_range=(-1, 901),
unconditional_batch_skip_range=2,
attention_weight_callback=lambda _: 0.5,
)
def test_faster_cache_basic_warning_or_errors_raised(self):
components = self.get_dummy_components()
logger = logging.get_logger("diffusers.hooks.faster_cache")
logger.setLevel(logging.INFO)
# Check if warning is raise when no attention_weight_callback is provided
pipe = self.pipeline_class(**components)
with CaptureLogger(logger) as cap_logger:
config = FasterCacheConfig(spatial_attention_block_skip_range=2, attention_weight_callback=None)
apply_faster_cache(pipe.transformer, config)
self.assertTrue("No `attention_weight_callback` provided when enabling FasterCache" in cap_logger.out)
# Check if error raised when unsupported tensor format used
pipe = self.pipeline_class(**components)
with self.assertRaises(ValueError):
config = FasterCacheConfig(spatial_attention_block_skip_range=2, tensor_format="BFHWC")
apply_faster_cache(pipe.transformer, config)
def test_faster_cache_inference(self, expected_atol: float = 0.1):
device = "cpu" # ensure determinism for the device-dependent torch.Generator
def create_pipe():
torch.manual_seed(0)
num_layers = 2
components = self.get_dummy_components(num_layers=num_layers)
pipe = self.pipeline_class(**components)
pipe = pipe.to(device)
pipe.set_progress_bar_config(disable=None)
return pipe
def run_forward(pipe):
torch.manual_seed(0)
inputs = self.get_dummy_inputs(device)
inputs["num_inference_steps"] = 4
return pipe(**inputs)[0]
# Run inference without FasterCache
pipe = create_pipe()
output = run_forward(pipe).flatten()
original_image_slice = np.concatenate((output[:8], output[-8:]))
# Run inference with FasterCache enabled
self.faster_cache_config.current_timestep_callback = lambda: pipe.current_timestep
pipe = create_pipe()
pipe.transformer.enable_cache(self.faster_cache_config)
output = run_forward(pipe).flatten().flatten()
image_slice_faster_cache_enabled = np.concatenate((output[:8], output[-8:]))
# Run inference with FasterCache disabled
pipe.transformer.disable_cache()
output = run_forward(pipe).flatten()
image_slice_faster_cache_disabled = np.concatenate((output[:8], output[-8:]))
assert np.allclose(original_image_slice, image_slice_faster_cache_enabled, atol=expected_atol), (
"FasterCache outputs should not differ much in specified timestep range."
)
assert np.allclose(original_image_slice, image_slice_faster_cache_disabled, atol=1e-4), (
"Outputs from normal inference and after disabling cache should not differ."
)
def test_faster_cache_state(self):
from diffusers.hooks.faster_cache import _FASTER_CACHE_BLOCK_HOOK, _FASTER_CACHE_DENOISER_HOOK
device = "cpu" # ensure determinism for the device-dependent torch.Generator
num_layers = 0
num_single_layers = 0
dummy_component_kwargs = {}
dummy_component_parameters = inspect.signature(self.get_dummy_components).parameters
if "num_layers" in dummy_component_parameters:
num_layers = 2
dummy_component_kwargs["num_layers"] = num_layers
if "num_single_layers" in dummy_component_parameters:
num_single_layers = 2
dummy_component_kwargs["num_single_layers"] = num_single_layers
components = self.get_dummy_components(**dummy_component_kwargs)
pipe = self.pipeline_class(**components)
pipe.set_progress_bar_config(disable=None)
self.faster_cache_config.current_timestep_callback = lambda: pipe.current_timestep
pipe.transformer.enable_cache(self.faster_cache_config)
expected_hooks = 0
if self.faster_cache_config.spatial_attention_block_skip_range is not None:
expected_hooks += num_layers + num_single_layers
if self.faster_cache_config.temporal_attention_block_skip_range is not None:
expected_hooks += num_layers + num_single_layers
# Check if faster_cache denoiser hook is attached
denoiser = pipe.transformer if hasattr(pipe, "transformer") else pipe.unet
self.assertTrue(
hasattr(denoiser, "_diffusers_hook")
and isinstance(denoiser._diffusers_hook.get_hook(_FASTER_CACHE_DENOISER_HOOK), FasterCacheDenoiserHook),
"Hook should be of type FasterCacheDenoiserHook.",
)
# Check if all blocks have faster_cache block hook attached
count = 0
for name, module in denoiser.named_modules():
if hasattr(module, "_diffusers_hook"):
if name == "":
# Skip the root denoiser module
continue
count += 1
self.assertTrue(
isinstance(module._diffusers_hook.get_hook(_FASTER_CACHE_BLOCK_HOOK), FasterCacheBlockHook),
"Hook should be of type FasterCacheBlockHook.",
)
self.assertEqual(count, expected_hooks, "Number of hooks should match expected number.")
# Perform inference to ensure that states are updated correctly
def faster_cache_state_check_callback(pipe, i, t, kwargs):
for name, module in denoiser.named_modules():
if not hasattr(module, "_diffusers_hook"):
continue
if name == "":
# Root denoiser module
state = module._diffusers_hook.get_hook(_FASTER_CACHE_DENOISER_HOOK).state
if not self.faster_cache_config.is_guidance_distilled:
self.assertTrue(state.low_frequency_delta is not None, "Low frequency delta should be set.")
self.assertTrue(state.high_frequency_delta is not None, "High frequency delta should be set.")
else:
# Internal blocks
state = module._diffusers_hook.get_hook(_FASTER_CACHE_BLOCK_HOOK).state
self.assertTrue(state.cache is not None and len(state.cache) == 2, "Cache should be set.")
self.assertTrue(state.iteration == i + 1, "Hook iteration state should have updated during inference.")
return {}
inputs = self.get_dummy_inputs(device)
inputs["num_inference_steps"] = 4
inputs["callback_on_step_end"] = faster_cache_state_check_callback
_ = pipe(**inputs)[0]
# After inference, reset_stateful_hooks is called within the pipeline, which should have reset the states
for name, module in denoiser.named_modules():
if not hasattr(module, "_diffusers_hook"):
continue
if name == "":
# Root denoiser module
state = module._diffusers_hook.get_hook(_FASTER_CACHE_DENOISER_HOOK).state
self.assertTrue(state.iteration == 0, "Iteration should be reset to 0.")
self.assertTrue(state.low_frequency_delta is None, "Low frequency delta should be reset to None.")
self.assertTrue(state.high_frequency_delta is None, "High frequency delta should be reset to None.")
else:
# Internal blocks
state = module._diffusers_hook.get_hook(_FASTER_CACHE_BLOCK_HOOK).state
self.assertTrue(state.iteration == 0, "Iteration should be reset to 0.")
self.assertTrue(state.batch_size is None, "Batch size should be reset to None.")
self.assertTrue(state.cache is None, "Cache should be reset to None.")
# Some models (e.g. unCLIP) are extremely likely to significantly deviate depending on which hardware is used.
# This helper function is used to check that the image doesn't deviate on average more than 10 pixels from a
# reference image.
def assert_mean_pixel_difference(image, expected_image, expected_max_diff=10):
image = np.asarray(DiffusionPipeline.numpy_to_pil(image)[0], dtype=np.float32)
expected_image = np.asarray(DiffusionPipeline.numpy_to_pil(expected_image)[0], dtype=np.float32)
avg_diff = np.abs(image - expected_image).mean()
assert avg_diff < expected_max_diff, f"Error image deviates {avg_diff} pixels on average"
|