Spaces:
Runtime error
Runtime error
File size: 109,686 Bytes
22a452a |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 272 273 274 275 276 277 278 279 280 281 282 283 284 285 286 287 288 289 290 291 292 293 294 295 296 297 298 299 300 301 302 303 304 305 306 307 308 309 310 311 312 313 314 315 316 317 318 319 320 321 322 323 324 325 326 327 328 329 330 331 332 333 334 335 336 337 338 339 340 341 342 343 344 345 346 347 348 349 350 351 352 353 354 355 356 357 358 359 360 361 362 363 364 365 366 367 368 369 370 371 372 373 374 375 376 377 378 379 380 381 382 383 384 385 386 387 388 389 390 391 392 393 394 395 396 397 398 399 400 401 402 403 404 405 406 407 408 409 410 411 412 413 414 415 416 417 418 419 420 421 422 423 424 425 426 427 428 429 430 431 432 433 434 435 436 437 438 439 440 441 442 443 444 445 446 447 448 449 450 451 452 453 454 455 456 457 458 459 460 461 462 463 464 465 466 467 468 469 470 471 472 473 474 475 476 477 478 479 480 481 482 483 484 485 486 487 488 489 490 491 492 493 494 495 496 497 498 499 500 501 502 503 504 505 506 507 508 509 510 511 512 513 514 515 516 517 518 519 520 521 522 523 524 525 526 527 528 529 530 531 532 533 534 535 536 537 538 539 540 541 542 543 544 545 546 547 548 549 550 551 552 553 554 555 556 557 558 559 560 561 562 563 564 565 566 567 568 569 570 571 572 573 574 575 576 577 578 579 580 581 582 583 584 585 586 587 588 589 590 591 592 593 594 595 596 597 598 599 600 601 602 603 604 605 606 607 608 609 610 611 612 613 614 615 616 617 618 619 620 621 622 623 624 625 626 627 628 629 630 631 632 633 634 635 636 637 638 639 640 641 642 643 644 645 646 647 648 649 650 651 652 653 654 655 656 657 658 659 660 661 662 663 664 665 666 667 668 669 670 671 672 673 674 675 676 677 678 679 680 681 682 683 684 685 686 687 688 689 690 691 692 693 694 695 696 697 698 699 700 701 702 703 704 705 706 707 708 709 710 711 712 713 714 715 716 717 718 719 720 721 722 723 724 725 726 727 728 729 730 731 732 733 734 735 736 737 738 739 740 741 742 743 744 745 746 747 748 749 750 751 752 753 754 755 756 757 758 759 760 761 762 763 764 765 766 767 768 769 770 771 772 773 774 775 776 777 778 779 780 781 782 783 784 785 786 787 788 789 790 791 792 793 794 795 796 797 798 799 800 801 802 803 804 805 806 807 808 809 810 811 812 813 814 815 816 817 818 819 820 821 822 823 824 825 826 827 828 829 830 831 832 833 834 835 836 837 838 839 840 841 842 843 844 845 846 847 848 849 850 851 852 853 854 855 856 857 858 859 860 861 862 863 864 865 866 867 868 869 870 871 872 873 874 875 876 877 878 879 880 881 882 883 884 885 886 887 888 889 890 891 892 893 894 895 896 897 898 899 900 901 902 903 904 905 906 907 908 909 910 911 912 913 914 915 916 917 918 919 920 921 922 923 924 925 926 927 928 929 930 931 932 933 934 935 936 937 938 939 940 941 942 943 944 945 946 947 948 949 950 951 952 953 954 955 956 957 958 959 960 961 962 963 964 965 966 967 968 969 970 971 972 973 974 975 976 977 978 979 980 981 982 983 984 985 986 987 988 989 990 991 992 993 994 995 996 997 998 999 1000 1001 1002 1003 1004 1005 1006 1007 1008 1009 1010 1011 1012 1013 1014 1015 1016 1017 1018 1019 1020 1021 1022 1023 1024 1025 1026 1027 1028 1029 1030 1031 1032 1033 1034 1035 1036 1037 1038 1039 1040 1041 1042 1043 1044 1045 1046 1047 1048 1049 1050 1051 1052 1053 1054 1055 1056 1057 1058 1059 1060 1061 1062 1063 1064 1065 1066 1067 1068 1069 1070 1071 1072 1073 1074 1075 1076 1077 1078 1079 1080 1081 1082 1083 1084 1085 1086 1087 1088 1089 1090 1091 1092 1093 1094 1095 1096 1097 1098 1099 1100 1101 1102 1103 1104 1105 1106 1107 1108 1109 1110 1111 1112 1113 1114 1115 1116 1117 1118 1119 1120 1121 1122 1123 1124 1125 1126 1127 1128 1129 1130 1131 1132 1133 1134 1135 1136 1137 1138 1139 1140 1141 1142 1143 1144 1145 1146 1147 1148 1149 1150 1151 1152 1153 1154 1155 1156 1157 1158 1159 1160 1161 1162 1163 1164 1165 1166 1167 1168 1169 1170 1171 1172 1173 1174 1175 1176 1177 1178 1179 1180 1181 1182 1183 1184 1185 1186 1187 1188 1189 1190 1191 1192 1193 1194 1195 1196 1197 1198 1199 1200 1201 1202 1203 1204 1205 1206 1207 1208 1209 1210 1211 1212 1213 1214 1215 1216 1217 1218 1219 1220 1221 1222 1223 1224 1225 1226 1227 1228 1229 1230 1231 1232 1233 1234 1235 1236 1237 1238 1239 1240 1241 1242 1243 1244 1245 1246 1247 1248 1249 1250 1251 1252 1253 1254 1255 1256 1257 1258 1259 1260 1261 1262 1263 1264 1265 1266 1267 1268 1269 1270 1271 1272 1273 1274 1275 1276 1277 1278 1279 1280 1281 1282 1283 1284 1285 1286 1287 1288 1289 1290 1291 1292 1293 1294 1295 1296 1297 1298 1299 1300 1301 1302 1303 1304 1305 1306 1307 1308 1309 1310 1311 1312 1313 1314 1315 1316 1317 1318 1319 1320 1321 1322 1323 1324 1325 1326 1327 1328 1329 1330 1331 1332 1333 1334 1335 1336 1337 1338 1339 1340 1341 1342 1343 1344 1345 1346 1347 1348 1349 1350 1351 1352 1353 1354 1355 1356 1357 1358 1359 1360 1361 1362 1363 1364 1365 1366 1367 1368 1369 1370 1371 1372 1373 1374 1375 1376 1377 1378 1379 1380 1381 1382 1383 1384 1385 1386 1387 1388 1389 1390 1391 1392 1393 1394 1395 1396 1397 1398 1399 1400 1401 1402 1403 1404 1405 1406 1407 1408 1409 1410 1411 1412 1413 1414 1415 1416 1417 1418 1419 1420 1421 1422 1423 1424 1425 1426 1427 1428 1429 1430 1431 1432 1433 1434 1435 1436 1437 1438 1439 1440 1441 1442 1443 1444 1445 1446 1447 1448 1449 1450 1451 1452 1453 1454 1455 1456 1457 1458 1459 1460 1461 1462 1463 1464 1465 1466 1467 1468 1469 1470 1471 1472 1473 1474 1475 1476 1477 1478 1479 1480 1481 1482 1483 1484 1485 1486 1487 1488 1489 1490 1491 1492 1493 1494 1495 1496 1497 1498 1499 1500 1501 1502 1503 1504 1505 1506 1507 1508 1509 1510 1511 1512 1513 1514 1515 1516 1517 1518 1519 1520 1521 1522 1523 1524 1525 1526 1527 1528 1529 1530 1531 1532 1533 1534 1535 1536 1537 1538 1539 1540 1541 1542 1543 1544 1545 1546 1547 1548 1549 1550 1551 1552 1553 1554 1555 1556 1557 1558 1559 1560 1561 1562 1563 1564 1565 1566 1567 1568 1569 1570 1571 1572 1573 1574 1575 1576 1577 1578 1579 1580 1581 1582 1583 1584 1585 1586 1587 1588 1589 1590 1591 1592 1593 1594 1595 1596 1597 1598 1599 1600 1601 1602 1603 1604 1605 1606 1607 1608 1609 1610 1611 1612 1613 1614 1615 1616 1617 1618 1619 1620 1621 1622 1623 1624 1625 1626 1627 1628 1629 1630 1631 1632 1633 1634 1635 1636 1637 1638 1639 1640 1641 1642 1643 1644 1645 1646 1647 1648 1649 1650 1651 1652 1653 1654 1655 1656 1657 1658 1659 1660 1661 1662 1663 1664 1665 1666 1667 1668 1669 1670 1671 1672 1673 1674 1675 1676 1677 1678 1679 1680 1681 1682 1683 1684 1685 1686 1687 1688 1689 1690 1691 1692 1693 1694 1695 1696 1697 1698 1699 1700 1701 1702 1703 1704 1705 1706 1707 1708 1709 1710 1711 1712 1713 1714 1715 1716 1717 1718 1719 1720 1721 1722 1723 1724 1725 1726 1727 1728 1729 1730 1731 1732 1733 1734 1735 1736 1737 1738 1739 1740 1741 1742 1743 1744 1745 1746 1747 1748 1749 1750 1751 1752 1753 1754 1755 1756 1757 1758 1759 1760 1761 1762 1763 1764 1765 1766 1767 1768 1769 1770 1771 1772 1773 1774 1775 1776 1777 1778 1779 1780 1781 1782 1783 1784 1785 1786 1787 1788 1789 1790 1791 1792 1793 1794 1795 1796 1797 1798 1799 1800 1801 1802 1803 1804 1805 1806 1807 1808 1809 1810 1811 1812 1813 1814 1815 1816 1817 1818 1819 1820 1821 1822 1823 1824 1825 1826 1827 1828 1829 1830 1831 1832 1833 1834 1835 1836 1837 1838 1839 1840 1841 1842 1843 1844 1845 1846 1847 1848 1849 1850 1851 1852 1853 1854 1855 1856 1857 1858 1859 1860 1861 1862 1863 1864 1865 1866 1867 1868 1869 1870 1871 1872 1873 1874 1875 1876 1877 1878 1879 1880 1881 1882 1883 1884 1885 1886 1887 1888 1889 1890 1891 1892 1893 1894 1895 1896 1897 1898 1899 1900 1901 1902 1903 1904 1905 1906 1907 1908 1909 1910 1911 1912 1913 1914 1915 1916 1917 1918 1919 1920 1921 1922 1923 1924 1925 1926 1927 1928 1929 1930 1931 1932 1933 1934 1935 1936 1937 1938 1939 1940 1941 1942 1943 1944 1945 1946 1947 1948 1949 1950 1951 1952 1953 1954 1955 1956 1957 1958 1959 1960 1961 1962 1963 1964 1965 1966 1967 1968 1969 1970 1971 1972 1973 1974 1975 1976 1977 1978 1979 1980 1981 1982 1983 1984 1985 1986 1987 1988 1989 1990 1991 1992 1993 1994 1995 1996 1997 1998 1999 2000 2001 2002 2003 2004 2005 2006 2007 2008 2009 2010 2011 2012 2013 2014 2015 2016 2017 2018 2019 2020 2021 2022 2023 2024 2025 2026 2027 2028 2029 2030 2031 2032 2033 2034 2035 2036 2037 2038 2039 2040 2041 2042 2043 2044 2045 2046 2047 2048 2049 2050 2051 2052 2053 2054 2055 2056 2057 2058 2059 2060 2061 2062 2063 2064 2065 2066 2067 2068 2069 2070 2071 2072 2073 2074 2075 2076 2077 2078 2079 2080 2081 2082 2083 2084 2085 2086 2087 2088 2089 2090 2091 2092 2093 2094 2095 2096 2097 2098 2099 2100 2101 2102 2103 2104 2105 2106 2107 2108 2109 2110 2111 2112 2113 2114 2115 2116 2117 2118 2119 2120 2121 2122 2123 2124 2125 2126 2127 2128 2129 2130 2131 2132 2133 2134 2135 2136 2137 2138 2139 2140 2141 2142 2143 2144 2145 2146 2147 2148 2149 2150 2151 2152 2153 2154 2155 2156 2157 2158 2159 2160 2161 2162 2163 2164 2165 2166 2167 2168 2169 2170 2171 2172 2173 2174 2175 2176 2177 2178 2179 2180 2181 2182 2183 2184 2185 2186 2187 2188 2189 2190 2191 2192 2193 2194 2195 2196 2197 2198 2199 2200 2201 2202 2203 2204 2205 2206 2207 2208 2209 2210 2211 2212 2213 2214 2215 2216 2217 2218 2219 2220 2221 2222 2223 2224 2225 2226 2227 2228 2229 2230 2231 2232 2233 2234 2235 2236 2237 2238 2239 2240 2241 2242 2243 2244 2245 2246 2247 2248 2249 2250 2251 2252 2253 2254 2255 2256 2257 2258 2259 2260 2261 2262 2263 2264 2265 2266 2267 2268 2269 2270 2271 2272 2273 2274 2275 2276 2277 2278 2279 2280 2281 2282 2283 2284 2285 2286 2287 2288 2289 2290 2291 2292 2293 2294 2295 2296 2297 2298 2299 2300 2301 2302 2303 2304 2305 2306 2307 2308 2309 2310 2311 2312 2313 2314 2315 2316 2317 2318 2319 2320 2321 2322 2323 2324 2325 2326 2327 2328 2329 2330 2331 2332 2333 2334 2335 2336 2337 2338 2339 2340 2341 2342 2343 2344 2345 2346 2347 2348 2349 2350 2351 2352 2353 2354 2355 2356 2357 2358 2359 2360 2361 2362 2363 2364 2365 2366 2367 2368 2369 2370 2371 2372 2373 2374 2375 2376 2377 2378 2379 2380 2381 2382 2383 2384 2385 2386 2387 2388 2389 2390 2391 2392 2393 2394 2395 2396 2397 2398 2399 2400 2401 2402 2403 2404 2405 2406 2407 2408 2409 2410 2411 2412 2413 2414 2415 2416 2417 2418 2419 2420 2421 2422 2423 2424 2425 2426 2427 2428 2429 2430 2431 2432 2433 2434 2435 2436 2437 2438 2439 2440 2441 2442 2443 2444 2445 2446 2447 |
# coding=utf-8
# Copyright 2024 HuggingFace Inc.
#
# Licensed under the Apache License, Version 2.0 (the "License");
# you may not use this file except in compliance with the License.
# You may obtain a copy of the License at
#
# http://www.apache.org/licenses/LICENSE-2.0
#
# Unless required by applicable law or agreed to in writing, software
# distributed under the License is distributed on an "AS IS" BASIS,
# WITHOUT WARRANTIES OR CONDITIONS OF ANY KIND, either express or implied.
# See the License for the specific language governing permissions and
# limitations under the License.
import gc
import json
import os
import random
import re
import shutil
import sys
import tempfile
import traceback
import unittest
import unittest.mock as mock
import warnings
import numpy as np
import PIL.Image
import requests_mock
import safetensors.torch
import torch
import torch.nn as nn
from huggingface_hub import snapshot_download
from parameterized import parameterized
from PIL import Image
from requests.exceptions import HTTPError
from transformers import CLIPImageProcessor, CLIPModel, CLIPTextConfig, CLIPTextModel, CLIPTokenizer
from diffusers import (
AutoencoderKL,
ConfigMixin,
DDIMPipeline,
DDIMScheduler,
DDPMPipeline,
DDPMScheduler,
DiffusionPipeline,
DPMSolverMultistepScheduler,
EulerAncestralDiscreteScheduler,
EulerDiscreteScheduler,
LMSDiscreteScheduler,
ModelMixin,
PNDMScheduler,
StableDiffusionImg2ImgPipeline,
StableDiffusionInpaintPipelineLegacy,
StableDiffusionPipeline,
UNet2DConditionModel,
UNet2DModel,
UniPCMultistepScheduler,
logging,
)
from diffusers.pipelines.pipeline_utils import _get_pipeline_class
from diffusers.schedulers.scheduling_utils import SCHEDULER_CONFIG_NAME
from diffusers.utils import (
CONFIG_NAME,
WEIGHTS_NAME,
)
from diffusers.utils.testing_utils import (
CaptureLogger,
backend_empty_cache,
enable_full_determinism,
floats_tensor,
get_python_version,
get_tests_dir,
is_torch_compile,
load_numpy,
nightly,
require_compel,
require_flax,
require_hf_hub_version_greater,
require_onnxruntime,
require_peft_backend,
require_peft_version_greater,
require_torch_2,
require_torch_accelerator,
require_transformers_version_greater,
run_test_in_subprocess,
slow,
torch_device,
)
from diffusers.utils.torch_utils import is_compiled_module
enable_full_determinism()
# Will be run via run_test_in_subprocess
def _test_from_save_pretrained_dynamo(in_queue, out_queue, timeout):
error = None
try:
# 1. Load models
model = UNet2DModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=3,
out_channels=3,
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
)
model = torch.compile(model)
scheduler = DDPMScheduler(num_train_timesteps=10)
ddpm = DDPMPipeline(model, scheduler)
# previous diffusers versions stripped compilation off
# compiled modules
assert is_compiled_module(ddpm.unet)
ddpm.to(torch_device)
ddpm.set_progress_bar_config(disable=None)
with tempfile.TemporaryDirectory() as tmpdirname:
ddpm.save_pretrained(tmpdirname)
new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
new_ddpm.to(torch_device)
generator = torch.Generator(device=torch_device).manual_seed(0)
image = ddpm(generator=generator, num_inference_steps=5, output_type="np").images
generator = torch.Generator(device=torch_device).manual_seed(0)
new_image = new_ddpm(generator=generator, num_inference_steps=5, output_type="np").images
assert np.abs(image - new_image).max() < 1e-5, "Models don't give the same forward pass"
except Exception:
error = f"{traceback.format_exc()}"
results = {"error": error}
out_queue.put(results, timeout=timeout)
out_queue.join()
class CustomEncoder(ModelMixin, ConfigMixin):
def __init__(self):
super().__init__()
self.linear = nn.Linear(3, 3)
class CustomPipeline(DiffusionPipeline):
def __init__(self, encoder: CustomEncoder, scheduler: DDIMScheduler):
super().__init__()
self.register_modules(encoder=encoder, scheduler=scheduler)
class DownloadTests(unittest.TestCase):
@unittest.skip("Flaky behaviour on CI. Re-enable after migrating to new runners")
def test_one_request_upon_cached(self):
# TODO: For some reason this test fails on MPS where no HEAD call is made.
if torch_device == "mps":
return
with tempfile.TemporaryDirectory() as tmpdirname:
with requests_mock.mock(real_http=True) as m:
DiffusionPipeline.download("hf-internal-testing/tiny-stable-diffusion-pipe", cache_dir=tmpdirname)
download_requests = [r.method for r in m.request_history]
assert download_requests.count("HEAD") == 15, "15 calls to files"
assert download_requests.count("GET") == 17, "15 calls to files + model_info + model_index.json"
assert len(download_requests) == 32, (
"2 calls per file (15 files) + send_telemetry, model_info and model_index.json"
)
with requests_mock.mock(real_http=True) as m:
DiffusionPipeline.download(
"hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
)
cache_requests = [r.method for r in m.request_history]
assert cache_requests.count("HEAD") == 1, "model_index.json is only HEAD"
assert cache_requests.count("GET") == 1, "model info is only GET"
assert len(cache_requests) == 2, (
"We should call only `model_info` to check for _commit hash and `send_telemetry`"
)
def test_less_downloads_passed_object(self):
with tempfile.TemporaryDirectory() as tmpdirname:
cached_folder = DiffusionPipeline.download(
"hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
)
# make sure safety checker is not downloaded
assert "safety_checker" not in os.listdir(cached_folder)
# make sure rest is downloaded
assert "unet" in os.listdir(cached_folder)
assert "tokenizer" in os.listdir(cached_folder)
assert "vae" in os.listdir(cached_folder)
assert "model_index.json" in os.listdir(cached_folder)
assert "scheduler" in os.listdir(cached_folder)
assert "feature_extractor" in os.listdir(cached_folder)
@unittest.skip("Flaky behaviour on CI. Re-enable after migrating to new runners")
def test_less_downloads_passed_object_calls(self):
# TODO: For some reason this test fails on MPS where no HEAD call is made.
if torch_device == "mps":
return
with tempfile.TemporaryDirectory() as tmpdirname:
with requests_mock.mock(real_http=True) as m:
DiffusionPipeline.download(
"hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
)
download_requests = [r.method for r in m.request_history]
# 15 - 2 because no call to config or model file for `safety_checker`
assert download_requests.count("HEAD") == 13, "13 calls to files"
# 17 - 2 because no call to config or model file for `safety_checker`
assert download_requests.count("GET") == 15, "13 calls to files + model_info + model_index.json"
assert len(download_requests) == 28, (
"2 calls per file (13 files) + send_telemetry, model_info and model_index.json"
)
with requests_mock.mock(real_http=True) as m:
DiffusionPipeline.download(
"hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
)
cache_requests = [r.method for r in m.request_history]
assert cache_requests.count("HEAD") == 1, "model_index.json is only HEAD"
assert cache_requests.count("GET") == 1, "model info is only GET"
assert len(cache_requests) == 2, (
"We should call only `model_info` to check for _commit hash and `send_telemetry`"
)
def test_download_only_pytorch(self):
with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights
tmpdirname = DiffusionPipeline.download(
"hf-internal-testing/tiny-stable-diffusion-pipe", safety_checker=None, cache_dir=tmpdirname
)
all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
files = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a flax file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack
assert not any(f.endswith(".msgpack") for f in files)
# We need to never convert this tiny model to safetensors for this test to pass
assert not any(f.endswith(".safetensors") for f in files)
def test_force_safetensors_error(self):
with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights
with self.assertRaises(EnvironmentError):
tmpdirname = DiffusionPipeline.download(
"hf-internal-testing/tiny-stable-diffusion-pipe-no-safetensors",
safety_checker=None,
cache_dir=tmpdirname,
use_safetensors=True,
)
def test_download_safetensors(self):
with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights
tmpdirname = DiffusionPipeline.download(
"hf-internal-testing/tiny-stable-diffusion-pipe-safetensors",
safety_checker=None,
cache_dir=tmpdirname,
)
all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
files = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a pytorch file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack
assert not any(f.endswith(".bin") for f in files)
def test_download_safetensors_index(self):
for variant in ["fp16", None]:
with tempfile.TemporaryDirectory() as tmpdirname:
tmpdirname = DiffusionPipeline.download(
"hf-internal-testing/tiny-stable-diffusion-pipe-indexes",
cache_dir=tmpdirname,
use_safetensors=True,
variant=variant,
)
all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
files = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a safetensors file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe-indexes/tree/main/text_encoder
if variant is None:
assert not any("fp16" in f for f in files)
else:
model_files = [f for f in files if "safetensors" in f]
assert all("fp16" in f for f in model_files)
assert len([f for f in files if ".safetensors" in f]) == 8
assert not any(".bin" in f for f in files)
def test_download_bin_index(self):
for variant in ["fp16", None]:
with tempfile.TemporaryDirectory() as tmpdirname:
tmpdirname = DiffusionPipeline.download(
"hf-internal-testing/tiny-stable-diffusion-pipe-indexes",
cache_dir=tmpdirname,
use_safetensors=False,
variant=variant,
)
all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
files = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a safetensors file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe-indexes/tree/main/text_encoder
if variant is None:
assert not any("fp16" in f for f in files)
else:
model_files = [f for f in files if "bin" in f]
assert all("fp16" in f for f in model_files)
assert len([f for f in files if ".bin" in f]) == 8
assert not any(".safetensors" in f for f in files)
def test_download_no_openvino_by_default(self):
with tempfile.TemporaryDirectory() as tmpdirname:
tmpdirname = DiffusionPipeline.download(
"hf-internal-testing/tiny-stable-diffusion-open-vino",
cache_dir=tmpdirname,
)
all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
files = [item for sublist in all_root_files for item in sublist]
# make sure that by default no openvino weights are downloaded
assert all((f.endswith(".json") or f.endswith(".bin") or f.endswith(".txt")) for f in files)
assert not any("openvino_" in f for f in files)
def test_download_no_onnx_by_default(self):
with tempfile.TemporaryDirectory() as tmpdirname:
tmpdirname = DiffusionPipeline.download(
"hf-internal-testing/tiny-stable-diffusion-xl-pipe",
cache_dir=tmpdirname,
use_safetensors=False,
)
all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
files = [item for sublist in all_root_files for item in sublist]
# make sure that by default no onnx weights are downloaded for non-ONNX pipelines
assert all((f.endswith(".json") or f.endswith(".bin") or f.endswith(".txt")) for f in files)
assert not any((f.endswith(".onnx") or f.endswith(".pb")) for f in files)
@require_onnxruntime
def test_download_onnx_by_default_for_onnx_pipelines(self):
with tempfile.TemporaryDirectory() as tmpdirname:
tmpdirname = DiffusionPipeline.download(
"hf-internal-testing/tiny-random-OnnxStableDiffusionPipeline",
cache_dir=tmpdirname,
)
all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
files = [item for sublist in all_root_files for item in sublist]
# make sure that by default onnx weights are downloaded for ONNX pipelines
assert any((f.endswith(".json") or f.endswith(".bin") or f.endswith(".txt")) for f in files)
assert any((f.endswith(".onnx")) for f in files)
assert any((f.endswith(".pb")) for f in files)
def test_download_no_safety_checker(self):
prompt = "hello"
pipe = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
)
pipe = pipe.to(torch_device)
generator = torch.manual_seed(0)
out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="np").images
pipe_2 = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
pipe_2 = pipe_2.to(torch_device)
generator = torch.manual_seed(0)
out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="np").images
assert np.max(np.abs(out - out_2)) < 1e-3
def test_load_no_safety_checker_explicit_locally(self):
prompt = "hello"
pipe = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
)
pipe = pipe.to(torch_device)
generator = torch.manual_seed(0)
out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="np").images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(tmpdirname)
pipe_2 = StableDiffusionPipeline.from_pretrained(tmpdirname, safety_checker=None)
pipe_2 = pipe_2.to(torch_device)
generator = torch.manual_seed(0)
out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="np").images
assert np.max(np.abs(out - out_2)) < 1e-3
def test_load_no_safety_checker_default_locally(self):
prompt = "hello"
pipe = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
pipe = pipe.to(torch_device)
generator = torch.manual_seed(0)
out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="np").images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(tmpdirname)
pipe_2 = StableDiffusionPipeline.from_pretrained(tmpdirname)
pipe_2 = pipe_2.to(torch_device)
generator = torch.manual_seed(0)
out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="np").images
assert np.max(np.abs(out - out_2)) < 1e-3
def test_cached_files_are_used_when_no_internet(self):
# A mock response for an HTTP head request to emulate server down
response_mock = mock.Mock()
response_mock.status_code = 500
response_mock.headers = {}
response_mock.raise_for_status.side_effect = HTTPError
response_mock.json.return_value = {}
# Download this model to make sure it's in the cache.
orig_pipe = DiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
)
orig_comps = {k: v for k, v in orig_pipe.components.items() if hasattr(v, "parameters")}
# Under the mock environment we get a 500 error when trying to reach the model.
with mock.patch("requests.request", return_value=response_mock):
# Download this model to make sure it's in the cache.
pipe = DiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
)
comps = {k: v for k, v in pipe.components.items() if hasattr(v, "parameters")}
for m1, m2 in zip(orig_comps.values(), comps.values()):
for p1, p2 in zip(m1.parameters(), m2.parameters()):
if p1.data.ne(p2.data).sum() > 0:
assert False, "Parameters not the same!"
def test_local_files_only_are_used_when_no_internet(self):
# A mock response for an HTTP head request to emulate server down
response_mock = mock.Mock()
response_mock.status_code = 500
response_mock.headers = {}
response_mock.raise_for_status.side_effect = HTTPError
response_mock.json.return_value = {}
# first check that with local files only the pipeline can only be used if cached
with self.assertRaises(FileNotFoundError):
with tempfile.TemporaryDirectory() as tmpdirname:
orig_pipe = DiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", local_files_only=True, cache_dir=tmpdirname
)
# now download
orig_pipe = DiffusionPipeline.download("hf-internal-testing/tiny-stable-diffusion-torch")
# make sure it can be loaded with local_files_only
orig_pipe = DiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", local_files_only=True
)
orig_comps = {k: v for k, v in orig_pipe.components.items() if hasattr(v, "parameters")}
# Under the mock environment we get a 500 error when trying to connect to the internet.
# Make sure it works local_files_only only works here!
with mock.patch("requests.request", return_value=response_mock):
# Download this model to make sure it's in the cache.
pipe = DiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
comps = {k: v for k, v in pipe.components.items() if hasattr(v, "parameters")}
for m1, m2 in zip(orig_comps.values(), comps.values()):
for p1, p2 in zip(m1.parameters(), m2.parameters()):
if p1.data.ne(p2.data).sum() > 0:
assert False, "Parameters not the same!"
def test_download_from_variant_folder(self):
for use_safetensors in [False, True]:
other_format = ".bin" if use_safetensors else ".safetensors"
with tempfile.TemporaryDirectory() as tmpdirname:
tmpdirname = StableDiffusionPipeline.download(
"hf-internal-testing/stable-diffusion-all-variants",
cache_dir=tmpdirname,
use_safetensors=use_safetensors,
)
all_root_files = [t[-1] for t in os.walk(tmpdirname)]
files = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a variant file even if we have some here:
# https://huggingface.co/hf-internal-testing/stable-diffusion-all-variants/tree/main/unet
assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
assert not any(f.endswith(other_format) for f in files)
# no variants
assert not any(len(f.split(".")) == 3 for f in files)
def test_download_variant_all(self):
for use_safetensors in [False, True]:
other_format = ".bin" if use_safetensors else ".safetensors"
this_format = ".safetensors" if use_safetensors else ".bin"
variant = "fp16"
with tempfile.TemporaryDirectory() as tmpdirname:
tmpdirname = StableDiffusionPipeline.download(
"hf-internal-testing/stable-diffusion-all-variants",
cache_dir=tmpdirname,
variant=variant,
use_safetensors=use_safetensors,
)
all_root_files = [t[-1] for t in os.walk(tmpdirname)]
files = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a non-variant file even if we have some here:
# https://huggingface.co/hf-internal-testing/stable-diffusion-all-variants/tree/main/unet
assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
# unet, vae, text_encoder, safety_checker
assert len([f for f in files if f.endswith(f"{variant}{this_format}")]) == 4
# all checkpoints should have variant ending
assert not any(f.endswith(this_format) and not f.endswith(f"{variant}{this_format}") for f in files)
assert not any(f.endswith(other_format) for f in files)
def test_download_variant_partly(self):
for use_safetensors in [False, True]:
other_format = ".bin" if use_safetensors else ".safetensors"
this_format = ".safetensors" if use_safetensors else ".bin"
variant = "no_ema"
with tempfile.TemporaryDirectory() as tmpdirname:
tmpdirname = StableDiffusionPipeline.download(
"hf-internal-testing/stable-diffusion-all-variants",
cache_dir=tmpdirname,
variant=variant,
use_safetensors=use_safetensors,
)
all_root_files = [t[-1] for t in os.walk(tmpdirname)]
files = [item for sublist in all_root_files for item in sublist]
unet_files = os.listdir(os.path.join(tmpdirname, "unet"))
# Some of the downloaded files should be a non-variant file, check:
# https://huggingface.co/hf-internal-testing/stable-diffusion-all-variants/tree/main/unet
assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
# only unet has "no_ema" variant
assert f"diffusion_pytorch_model.{variant}{this_format}" in unet_files
assert len([f for f in files if f.endswith(f"{variant}{this_format}")]) == 1
# vae, safety_checker and text_encoder should have no variant
assert sum(f.endswith(this_format) and not f.endswith(f"{variant}{this_format}") for f in files) == 3
assert not any(f.endswith(other_format) for f in files)
def test_download_variants_with_sharded_checkpoints(self):
# Here we test for downloading of "variant" files belonging to the `unet` and
# the `text_encoder`. Their checkpoints can be sharded.
for use_safetensors in [True, False]:
for variant in ["fp16", None]:
with tempfile.TemporaryDirectory() as tmpdirname:
tmpdirname = DiffusionPipeline.download(
"hf-internal-testing/tiny-stable-diffusion-pipe-variants-right-format",
safety_checker=None,
cache_dir=tmpdirname,
variant=variant,
use_safetensors=use_safetensors,
)
all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
files = [item for sublist in all_root_files for item in sublist]
# Check for `model_ext` and `variant`.
model_ext = ".safetensors" if use_safetensors else ".bin"
unexpected_ext = ".bin" if use_safetensors else ".safetensors"
model_files = [f for f in files if f.endswith(model_ext)]
assert not any(f.endswith(unexpected_ext) for f in files)
assert all(variant in f for f in model_files if f.endswith(model_ext) and variant is not None)
def test_download_legacy_variants_with_sharded_ckpts_raises_warning(self):
repo_id = "hf-internal-testing/tiny-stable-diffusion-pipe-variants-all-kinds"
logger = logging.get_logger("diffusers.pipelines.pipeline_utils")
deprecated_warning_msg = "Warning: The repository contains sharded checkpoints for variant"
with CaptureLogger(logger) as cap_logger:
with tempfile.TemporaryDirectory() as tmpdirname:
local_repo_id = snapshot_download(repo_id, cache_dir=tmpdirname)
_ = DiffusionPipeline.from_pretrained(
local_repo_id,
safety_checker=None,
variant="fp16",
use_safetensors=True,
)
assert deprecated_warning_msg in str(cap_logger), "Deprecation warning not found in logs"
def test_download_safetensors_only_variant_exists_for_model(self):
variant = None
use_safetensors = True
# text encoder is missing no variant weights, so the following can't work
with tempfile.TemporaryDirectory() as tmpdirname:
with self.assertRaises(OSError) as error_context:
tmpdirname = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/stable-diffusion-broken-variants",
cache_dir=tmpdirname,
variant=variant,
use_safetensors=use_safetensors,
)
assert "Could not find the necessary `safetensors` weights" in str(error_context.exception)
# text encoder has fp16 variants so we can load it
with tempfile.TemporaryDirectory() as tmpdirname:
tmpdirname = StableDiffusionPipeline.download(
"hf-internal-testing/stable-diffusion-broken-variants",
use_safetensors=use_safetensors,
cache_dir=tmpdirname,
variant="fp16",
)
all_root_files = [t[-1] for t in os.walk(tmpdirname)]
files = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a non-variant file even if we have some here:
# https://huggingface.co/hf-internal-testing/stable-diffusion-broken-variants/tree/main/unet
assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
def test_download_bin_only_variant_exists_for_model(self):
variant = None
use_safetensors = False
# text encoder is missing Non-variant weights, so the following can't work
with tempfile.TemporaryDirectory() as tmpdirname:
with self.assertRaises(OSError) as error_context:
tmpdirname = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/stable-diffusion-broken-variants",
cache_dir=tmpdirname,
variant=variant,
use_safetensors=use_safetensors,
)
assert "Error no file name" in str(error_context.exception)
# text encoder has fp16 variants so we can load it
with tempfile.TemporaryDirectory() as tmpdirname:
tmpdirname = StableDiffusionPipeline.download(
"hf-internal-testing/stable-diffusion-broken-variants",
use_safetensors=use_safetensors,
cache_dir=tmpdirname,
variant="fp16",
)
all_root_files = [t[-1] for t in os.walk(tmpdirname)]
files = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a non-variant file even if we have some here:
# https://huggingface.co/hf-internal-testing/stable-diffusion-broken-variants/tree/main/unet
assert len(files) == 15, f"We should only download 15 files, not {len(files)}"
def test_download_safetensors_variant_does_not_exist_for_model(self):
variant = "no_ema"
use_safetensors = True
# text encoder is missing no_ema variant weights, so the following can't work
with tempfile.TemporaryDirectory() as tmpdirname:
with self.assertRaises(OSError) as error_context:
tmpdirname = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/stable-diffusion-broken-variants",
cache_dir=tmpdirname,
variant=variant,
use_safetensors=use_safetensors,
)
assert "Could not find the necessary `safetensors` weights" in str(error_context.exception)
def test_download_bin_variant_does_not_exist_for_model(self):
variant = "no_ema"
use_safetensors = False
# text encoder is missing no_ema variant weights, so the following can't work
with tempfile.TemporaryDirectory() as tmpdirname:
with self.assertRaises(OSError) as error_context:
tmpdirname = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/stable-diffusion-broken-variants",
cache_dir=tmpdirname,
variant=variant,
use_safetensors=use_safetensors,
)
assert "Error no file name" in str(error_context.exception)
def test_local_save_load_index(self):
prompt = "hello"
for variant in [None, "fp16"]:
for use_safe in [True, False]:
pipe = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-pipe-indexes",
variant=variant,
use_safetensors=use_safe,
safety_checker=None,
)
pipe = pipe.to(torch_device)
generator = torch.manual_seed(0)
out = pipe(prompt, num_inference_steps=2, generator=generator, output_type="np").images
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(tmpdirname, variant=variant, safe_serialization=use_safe)
pipe_2 = StableDiffusionPipeline.from_pretrained(
tmpdirname, safe_serialization=use_safe, variant=variant
)
pipe_2 = pipe_2.to(torch_device)
generator = torch.manual_seed(0)
out_2 = pipe_2(prompt, num_inference_steps=2, generator=generator, output_type="np").images
assert np.max(np.abs(out - out_2)) < 1e-3
def test_text_inversion_download(self):
pipe = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
)
pipe = pipe.to(torch_device)
num_tokens = len(pipe.tokenizer)
# single token load local
with tempfile.TemporaryDirectory() as tmpdirname:
ten = {"<*>": torch.ones((32,))}
torch.save(ten, os.path.join(tmpdirname, "learned_embeds.bin"))
pipe.load_textual_inversion(tmpdirname)
token = pipe.tokenizer.convert_tokens_to_ids("<*>")
assert token == num_tokens, "Added token must be at spot `num_tokens`"
assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 32
assert pipe._maybe_convert_prompt("<*>", pipe.tokenizer) == "<*>"
prompt = "hey <*>"
out = pipe(prompt, num_inference_steps=1, output_type="np").images
assert out.shape == (1, 128, 128, 3)
# single token load local with weight name
with tempfile.TemporaryDirectory() as tmpdirname:
ten = {"<**>": 2 * torch.ones((1, 32))}
torch.save(ten, os.path.join(tmpdirname, "learned_embeds.bin"))
pipe.load_textual_inversion(tmpdirname, weight_name="learned_embeds.bin")
token = pipe.tokenizer.convert_tokens_to_ids("<**>")
assert token == num_tokens + 1, "Added token must be at spot `num_tokens`"
assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 64
assert pipe._maybe_convert_prompt("<**>", pipe.tokenizer) == "<**>"
prompt = "hey <**>"
out = pipe(prompt, num_inference_steps=1, output_type="np").images
assert out.shape == (1, 128, 128, 3)
# multi token load
with tempfile.TemporaryDirectory() as tmpdirname:
ten = {"<***>": torch.cat([3 * torch.ones((1, 32)), 4 * torch.ones((1, 32)), 5 * torch.ones((1, 32))])}
torch.save(ten, os.path.join(tmpdirname, "learned_embeds.bin"))
pipe.load_textual_inversion(tmpdirname)
token = pipe.tokenizer.convert_tokens_to_ids("<***>")
token_1 = pipe.tokenizer.convert_tokens_to_ids("<***>_1")
token_2 = pipe.tokenizer.convert_tokens_to_ids("<***>_2")
assert token == num_tokens + 2, "Added token must be at spot `num_tokens`"
assert token_1 == num_tokens + 3, "Added token must be at spot `num_tokens`"
assert token_2 == num_tokens + 4, "Added token must be at spot `num_tokens`"
assert pipe.text_encoder.get_input_embeddings().weight[-3].sum().item() == 96
assert pipe.text_encoder.get_input_embeddings().weight[-2].sum().item() == 128
assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 160
assert pipe._maybe_convert_prompt("<***>", pipe.tokenizer) == "<***> <***>_1 <***>_2"
prompt = "hey <***>"
out = pipe(prompt, num_inference_steps=1, output_type="np").images
assert out.shape == (1, 128, 128, 3)
# multi token load a1111
with tempfile.TemporaryDirectory() as tmpdirname:
ten = {
"string_to_param": {
"*": torch.cat([3 * torch.ones((1, 32)), 4 * torch.ones((1, 32)), 5 * torch.ones((1, 32))])
},
"name": "<****>",
}
torch.save(ten, os.path.join(tmpdirname, "a1111.bin"))
pipe.load_textual_inversion(tmpdirname, weight_name="a1111.bin")
token = pipe.tokenizer.convert_tokens_to_ids("<****>")
token_1 = pipe.tokenizer.convert_tokens_to_ids("<****>_1")
token_2 = pipe.tokenizer.convert_tokens_to_ids("<****>_2")
assert token == num_tokens + 5, "Added token must be at spot `num_tokens`"
assert token_1 == num_tokens + 6, "Added token must be at spot `num_tokens`"
assert token_2 == num_tokens + 7, "Added token must be at spot `num_tokens`"
assert pipe.text_encoder.get_input_embeddings().weight[-3].sum().item() == 96
assert pipe.text_encoder.get_input_embeddings().weight[-2].sum().item() == 128
assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 160
assert pipe._maybe_convert_prompt("<****>", pipe.tokenizer) == "<****> <****>_1 <****>_2"
prompt = "hey <****>"
out = pipe(prompt, num_inference_steps=1, output_type="np").images
assert out.shape == (1, 128, 128, 3)
# multi embedding load
with tempfile.TemporaryDirectory() as tmpdirname1:
with tempfile.TemporaryDirectory() as tmpdirname2:
ten = {"<*****>": torch.ones((32,))}
torch.save(ten, os.path.join(tmpdirname1, "learned_embeds.bin"))
ten = {"<******>": 2 * torch.ones((1, 32))}
torch.save(ten, os.path.join(tmpdirname2, "learned_embeds.bin"))
pipe.load_textual_inversion([tmpdirname1, tmpdirname2])
token = pipe.tokenizer.convert_tokens_to_ids("<*****>")
assert token == num_tokens + 8, "Added token must be at spot `num_tokens`"
assert pipe.text_encoder.get_input_embeddings().weight[-2].sum().item() == 32
assert pipe._maybe_convert_prompt("<*****>", pipe.tokenizer) == "<*****>"
token = pipe.tokenizer.convert_tokens_to_ids("<******>")
assert token == num_tokens + 9, "Added token must be at spot `num_tokens`"
assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 64
assert pipe._maybe_convert_prompt("<******>", pipe.tokenizer) == "<******>"
prompt = "hey <*****> <******>"
out = pipe(prompt, num_inference_steps=1, output_type="np").images
assert out.shape == (1, 128, 128, 3)
# single token state dict load
ten = {"<x>": torch.ones((32,))}
pipe.load_textual_inversion(ten)
token = pipe.tokenizer.convert_tokens_to_ids("<x>")
assert token == num_tokens + 10, "Added token must be at spot `num_tokens`"
assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 32
assert pipe._maybe_convert_prompt("<x>", pipe.tokenizer) == "<x>"
prompt = "hey <x>"
out = pipe(prompt, num_inference_steps=1, output_type="np").images
assert out.shape == (1, 128, 128, 3)
# multi embedding state dict load
ten1 = {"<xxxxx>": torch.ones((32,))}
ten2 = {"<xxxxxx>": 2 * torch.ones((1, 32))}
pipe.load_textual_inversion([ten1, ten2])
token = pipe.tokenizer.convert_tokens_to_ids("<xxxxx>")
assert token == num_tokens + 11, "Added token must be at spot `num_tokens`"
assert pipe.text_encoder.get_input_embeddings().weight[-2].sum().item() == 32
assert pipe._maybe_convert_prompt("<xxxxx>", pipe.tokenizer) == "<xxxxx>"
token = pipe.tokenizer.convert_tokens_to_ids("<xxxxxx>")
assert token == num_tokens + 12, "Added token must be at spot `num_tokens`"
assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 64
assert pipe._maybe_convert_prompt("<xxxxxx>", pipe.tokenizer) == "<xxxxxx>"
prompt = "hey <xxxxx> <xxxxxx>"
out = pipe(prompt, num_inference_steps=1, output_type="np").images
assert out.shape == (1, 128, 128, 3)
# auto1111 multi-token state dict load
ten = {
"string_to_param": {
"*": torch.cat([3 * torch.ones((1, 32)), 4 * torch.ones((1, 32)), 5 * torch.ones((1, 32))])
},
"name": "<xxxx>",
}
pipe.load_textual_inversion(ten)
token = pipe.tokenizer.convert_tokens_to_ids("<xxxx>")
token_1 = pipe.tokenizer.convert_tokens_to_ids("<xxxx>_1")
token_2 = pipe.tokenizer.convert_tokens_to_ids("<xxxx>_2")
assert token == num_tokens + 13, "Added token must be at spot `num_tokens`"
assert token_1 == num_tokens + 14, "Added token must be at spot `num_tokens`"
assert token_2 == num_tokens + 15, "Added token must be at spot `num_tokens`"
assert pipe.text_encoder.get_input_embeddings().weight[-3].sum().item() == 96
assert pipe.text_encoder.get_input_embeddings().weight[-2].sum().item() == 128
assert pipe.text_encoder.get_input_embeddings().weight[-1].sum().item() == 160
assert pipe._maybe_convert_prompt("<xxxx>", pipe.tokenizer) == "<xxxx> <xxxx>_1 <xxxx>_2"
prompt = "hey <xxxx>"
out = pipe(prompt, num_inference_steps=1, output_type="np").images
assert out.shape == (1, 128, 128, 3)
# multiple references to multi embedding
ten = {"<cat>": torch.ones(3, 32)}
pipe.load_textual_inversion(ten)
assert (
pipe._maybe_convert_prompt("<cat> <cat>", pipe.tokenizer) == "<cat> <cat>_1 <cat>_2 <cat> <cat>_1 <cat>_2"
)
prompt = "hey <cat> <cat>"
out = pipe(prompt, num_inference_steps=1, output_type="np").images
assert out.shape == (1, 128, 128, 3)
def test_text_inversion_multi_tokens(self):
pipe1 = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
)
pipe1 = pipe1.to(torch_device)
token1, token2 = "<*>", "<**>"
ten1 = torch.ones((32,))
ten2 = torch.ones((32,)) * 2
num_tokens = len(pipe1.tokenizer)
pipe1.load_textual_inversion(ten1, token=token1)
pipe1.load_textual_inversion(ten2, token=token2)
emb1 = pipe1.text_encoder.get_input_embeddings().weight
pipe2 = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
)
pipe2 = pipe2.to(torch_device)
pipe2.load_textual_inversion([ten1, ten2], token=[token1, token2])
emb2 = pipe2.text_encoder.get_input_embeddings().weight
pipe3 = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
)
pipe3 = pipe3.to(torch_device)
pipe3.load_textual_inversion(torch.stack([ten1, ten2], dim=0), token=[token1, token2])
emb3 = pipe3.text_encoder.get_input_embeddings().weight
assert len(pipe1.tokenizer) == len(pipe2.tokenizer) == len(pipe3.tokenizer) == num_tokens + 2
assert (
pipe1.tokenizer.convert_tokens_to_ids(token1)
== pipe2.tokenizer.convert_tokens_to_ids(token1)
== pipe3.tokenizer.convert_tokens_to_ids(token1)
== num_tokens
)
assert (
pipe1.tokenizer.convert_tokens_to_ids(token2)
== pipe2.tokenizer.convert_tokens_to_ids(token2)
== pipe3.tokenizer.convert_tokens_to_ids(token2)
== num_tokens + 1
)
assert emb1[num_tokens].sum().item() == emb2[num_tokens].sum().item() == emb3[num_tokens].sum().item()
assert (
emb1[num_tokens + 1].sum().item() == emb2[num_tokens + 1].sum().item() == emb3[num_tokens + 1].sum().item()
)
def test_textual_inversion_unload(self):
pipe1 = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
)
pipe1 = pipe1.to(torch_device)
orig_tokenizer_size = len(pipe1.tokenizer)
orig_emb_size = len(pipe1.text_encoder.get_input_embeddings().weight)
token = "<*>"
ten = torch.ones((32,))
pipe1.load_textual_inversion(ten, token=token)
pipe1.unload_textual_inversion()
pipe1.load_textual_inversion(ten, token=token)
pipe1.unload_textual_inversion()
final_tokenizer_size = len(pipe1.tokenizer)
final_emb_size = len(pipe1.text_encoder.get_input_embeddings().weight)
# both should be restored to original size
assert final_tokenizer_size == orig_tokenizer_size
assert final_emb_size == orig_emb_size
def test_download_ignore_files(self):
# Check https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe-ignore-files/blob/72f58636e5508a218c6b3f60550dc96445547817/model_index.json#L4
with tempfile.TemporaryDirectory() as tmpdirname:
# pipeline has Flax weights
tmpdirname = DiffusionPipeline.download("hf-internal-testing/tiny-stable-diffusion-pipe-ignore-files")
all_root_files = [t[-1] for t in os.walk(os.path.join(tmpdirname))]
files = [item for sublist in all_root_files for item in sublist]
# None of the downloaded files should be a pytorch file even if we have some here:
# https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-pipe/blob/main/unet/diffusion_flax_model.msgpack
assert not any(f in ["vae/diffusion_pytorch_model.bin", "text_encoder/config.json"] for f in files)
assert len(files) == 14
def test_download_dduf_with_custom_pipeline_raises_error(self):
with self.assertRaises(NotImplementedError):
_ = DiffusionPipeline.download(
"DDUF/tiny-flux-dev-pipe-dduf", dduf_file="fluxpipeline.dduf", custom_pipeline="my_pipeline"
)
def test_download_dduf_with_connected_pipeline_raises_error(self):
with self.assertRaises(NotImplementedError):
_ = DiffusionPipeline.download(
"DDUF/tiny-flux-dev-pipe-dduf", dduf_file="fluxpipeline.dduf", load_connected_pipeline=True
)
def test_get_pipeline_class_from_flax(self):
flax_config = {"_class_name": "FlaxStableDiffusionPipeline"}
config = {"_class_name": "StableDiffusionPipeline"}
# when loading a PyTorch Pipeline from a FlaxPipeline `model_index.json`, e.g.: https://huggingface.co/hf-internal-testing/tiny-stable-diffusion-lms-pipe/blob/7a9063578b325779f0f1967874a6771caa973cad/model_index.json#L2
# we need to make sure that we don't load the Flax Pipeline class, but instead the PyTorch pipeline class
assert _get_pipeline_class(DiffusionPipeline, flax_config) == _get_pipeline_class(DiffusionPipeline, config)
class CustomPipelineTests(unittest.TestCase):
def test_load_custom_pipeline(self):
pipeline = DiffusionPipeline.from_pretrained(
"google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
)
pipeline = pipeline.to(torch_device)
# NOTE that `"CustomPipeline"` is not a class that is defined in this library, but solely on the Hub
# under https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L24
assert pipeline.__class__.__name__ == "CustomPipeline"
def test_load_custom_github(self):
pipeline = DiffusionPipeline.from_pretrained(
"google/ddpm-cifar10-32", custom_pipeline="one_step_unet", custom_revision="main"
)
# make sure that on "main" pipeline gives only ones because of: https://github.com/huggingface/diffusers/pull/1690
with torch.no_grad():
output = pipeline()
assert output.numel() == output.sum()
# hack since Python doesn't like overwriting modules: https://stackoverflow.com/questions/3105801/unload-a-module-in-python
# Could in the future work with hashes instead.
del sys.modules["diffusers_modules.git.one_step_unet"]
pipeline = DiffusionPipeline.from_pretrained(
"google/ddpm-cifar10-32", custom_pipeline="one_step_unet", custom_revision="0.10.2"
)
with torch.no_grad():
output = pipeline()
assert output.numel() != output.sum()
assert pipeline.__class__.__name__ == "UnetSchedulerOneForwardPipeline"
def test_run_custom_pipeline(self):
pipeline = DiffusionPipeline.from_pretrained(
"google/ddpm-cifar10-32", custom_pipeline="hf-internal-testing/diffusers-dummy-pipeline"
)
pipeline = pipeline.to(torch_device)
images, output_str = pipeline(num_inference_steps=2, output_type="np")
assert images[0].shape == (1, 32, 32, 3)
# compare output to https://huggingface.co/hf-internal-testing/diffusers-dummy-pipeline/blob/main/pipeline.py#L102
assert output_str == "This is a test"
def test_remote_components(self):
# make sure that trust remote code has to be passed
with self.assertRaises(ValueError):
pipeline = DiffusionPipeline.from_pretrained("hf-internal-testing/tiny-sdxl-custom-components")
# Check that only loading custom components "my_unet", "my_scheduler" works
pipeline = DiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-sdxl-custom-components", trust_remote_code=True
)
assert pipeline.config.unet == ("diffusers_modules.local.my_unet_model", "MyUNetModel")
assert pipeline.config.scheduler == ("diffusers_modules.local.my_scheduler", "MyScheduler")
assert pipeline.__class__.__name__ == "StableDiffusionXLPipeline"
pipeline = pipeline.to(torch_device)
images = pipeline("test", num_inference_steps=2, output_type="np")[0]
assert images.shape == (1, 64, 64, 3)
# Check that only loading custom components "my_unet", "my_scheduler" and explicit custom pipeline works
pipeline = DiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-sdxl-custom-components", custom_pipeline="my_pipeline", trust_remote_code=True
)
assert pipeline.config.unet == ("diffusers_modules.local.my_unet_model", "MyUNetModel")
assert pipeline.config.scheduler == ("diffusers_modules.local.my_scheduler", "MyScheduler")
assert pipeline.__class__.__name__ == "MyPipeline"
pipeline = pipeline.to(torch_device)
images = pipeline("test", num_inference_steps=2, output_type="np")[0]
assert images.shape == (1, 64, 64, 3)
def test_remote_auto_custom_pipe(self):
# make sure that trust remote code has to be passed
with self.assertRaises(ValueError):
pipeline = DiffusionPipeline.from_pretrained("hf-internal-testing/tiny-sdxl-custom-all")
# Check that only loading custom components "my_unet", "my_scheduler" and auto custom pipeline works
pipeline = DiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-sdxl-custom-all", trust_remote_code=True
)
assert pipeline.config.unet == ("diffusers_modules.local.my_unet_model", "MyUNetModel")
assert pipeline.config.scheduler == ("diffusers_modules.local.my_scheduler", "MyScheduler")
assert pipeline.__class__.__name__ == "MyPipeline"
pipeline = pipeline.to(torch_device)
images = pipeline("test", num_inference_steps=2, output_type="np")[0]
assert images.shape == (1, 64, 64, 3)
def test_local_custom_pipeline_repo(self):
local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
pipeline = DiffusionPipeline.from_pretrained(
"google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
)
pipeline = pipeline.to(torch_device)
images, output_str = pipeline(num_inference_steps=2, output_type="np")
assert pipeline.__class__.__name__ == "CustomLocalPipeline"
assert images[0].shape == (1, 32, 32, 3)
# compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
assert output_str == "This is a local test"
def test_local_custom_pipeline_file(self):
local_custom_pipeline_path = get_tests_dir("fixtures/custom_pipeline")
local_custom_pipeline_path = os.path.join(local_custom_pipeline_path, "what_ever.py")
pipeline = DiffusionPipeline.from_pretrained(
"google/ddpm-cifar10-32", custom_pipeline=local_custom_pipeline_path
)
pipeline = pipeline.to(torch_device)
images, output_str = pipeline(num_inference_steps=2, output_type="np")
assert pipeline.__class__.__name__ == "CustomLocalPipeline"
assert images[0].shape == (1, 32, 32, 3)
# compare to https://github.com/huggingface/diffusers/blob/main/tests/fixtures/custom_pipeline/pipeline.py#L102
assert output_str == "This is a local test"
def test_custom_model_and_pipeline(self):
pipe = CustomPipeline(
encoder=CustomEncoder(),
scheduler=DDIMScheduler(),
)
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(tmpdirname, safe_serialization=False)
pipe_new = CustomPipeline.from_pretrained(tmpdirname)
pipe_new.save_pretrained(tmpdirname)
conf_1 = dict(pipe.config)
conf_2 = dict(pipe_new.config)
del conf_2["_name_or_path"]
assert conf_1 == conf_2
@slow
@require_torch_accelerator
def test_download_from_git(self):
# Because adaptive_avg_pool2d_backward_cuda
# does not have a deterministic implementation.
clip_model_id = "laion/CLIP-ViT-B-32-laion2B-s34B-b79K"
feature_extractor = CLIPImageProcessor.from_pretrained(clip_model_id)
clip_model = CLIPModel.from_pretrained(clip_model_id, torch_dtype=torch.float16)
pipeline = DiffusionPipeline.from_pretrained(
"CompVis/stable-diffusion-v1-4",
custom_pipeline="clip_guided_stable_diffusion",
clip_model=clip_model,
feature_extractor=feature_extractor,
torch_dtype=torch.float16,
)
pipeline.enable_attention_slicing()
pipeline = pipeline.to(torch_device)
# NOTE that `"CLIPGuidedStableDiffusion"` is not a class that is defined in the pypi package of th e library, but solely on the community examples folder of GitHub under:
# https://github.com/huggingface/diffusers/blob/main/examples/community/clip_guided_stable_diffusion.py
assert pipeline.__class__.__name__ == "CLIPGuidedStableDiffusion"
image = pipeline("a prompt", num_inference_steps=2, output_type="np").images[0]
assert image.shape == (512, 512, 3)
def test_save_pipeline_change_config(self):
pipe = DiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
)
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.save_pretrained(tmpdirname)
pipe = DiffusionPipeline.from_pretrained(tmpdirname)
assert pipe.scheduler.__class__.__name__ == "PNDMScheduler"
# let's make sure that changing the scheduler is correctly reflected
with tempfile.TemporaryDirectory() as tmpdirname:
pipe.scheduler = DPMSolverMultistepScheduler.from_config(pipe.scheduler.config)
pipe.save_pretrained(tmpdirname)
pipe = DiffusionPipeline.from_pretrained(tmpdirname)
assert pipe.scheduler.__class__.__name__ == "DPMSolverMultistepScheduler"
class PipelineFastTests(unittest.TestCase):
def setUp(self):
# clean up the VRAM before each test
super().setUp()
gc.collect()
torch.cuda.empty_cache()
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
torch.cuda.empty_cache()
def dummy_image(self):
batch_size = 1
num_channels = 3
sizes = (32, 32)
image = floats_tensor((batch_size, num_channels) + sizes, rng=random.Random(0)).to(torch_device)
return image
def dummy_uncond_unet(self, sample_size=32):
torch.manual_seed(0)
model = UNet2DModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=sample_size,
in_channels=3,
out_channels=3,
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
)
return model
def dummy_cond_unet(self, sample_size=32):
torch.manual_seed(0)
model = UNet2DConditionModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=sample_size,
in_channels=4,
out_channels=4,
down_block_types=("DownBlock2D", "CrossAttnDownBlock2D"),
up_block_types=("CrossAttnUpBlock2D", "UpBlock2D"),
cross_attention_dim=32,
)
return model
@property
def dummy_vae(self):
torch.manual_seed(0)
model = AutoencoderKL(
block_out_channels=[32, 64],
in_channels=3,
out_channels=3,
down_block_types=["DownEncoderBlock2D", "DownEncoderBlock2D"],
up_block_types=["UpDecoderBlock2D", "UpDecoderBlock2D"],
latent_channels=4,
)
return model
@property
def dummy_text_encoder(self):
torch.manual_seed(0)
config = CLIPTextConfig(
bos_token_id=0,
eos_token_id=2,
hidden_size=32,
intermediate_size=37,
layer_norm_eps=1e-05,
num_attention_heads=4,
num_hidden_layers=5,
pad_token_id=1,
vocab_size=1000,
)
return CLIPTextModel(config)
@property
def dummy_extractor(self):
def extract(*args, **kwargs):
class Out:
def __init__(self):
self.pixel_values = torch.ones([0])
def to(self, device):
self.pixel_values.to(device)
return self
return Out()
return extract
@parameterized.expand(
[
[DDIMScheduler, DDIMPipeline, 32],
[DDPMScheduler, DDPMPipeline, 32],
[DDIMScheduler, DDIMPipeline, (32, 64)],
[DDPMScheduler, DDPMPipeline, (64, 32)],
]
)
def test_uncond_unet_components(self, scheduler_fn=DDPMScheduler, pipeline_fn=DDPMPipeline, sample_size=32):
unet = self.dummy_uncond_unet(sample_size)
scheduler = scheduler_fn()
pipeline = pipeline_fn(unet, scheduler).to(torch_device)
generator = torch.manual_seed(0)
out_image = pipeline(
generator=generator,
num_inference_steps=2,
output_type="np",
).images
sample_size = (sample_size, sample_size) if isinstance(sample_size, int) else sample_size
assert out_image.shape == (1, *sample_size, 3)
def test_stable_diffusion_components(self):
"""Test that components property works correctly"""
unet = self.dummy_cond_unet()
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
image = self.dummy_image().cpu().permute(0, 2, 3, 1)[0]
init_image = Image.fromarray(np.uint8(image)).convert("RGB")
mask_image = Image.fromarray(np.uint8(image + 4)).convert("RGB").resize((32, 32))
# make sure here that pndm scheduler skips prk
inpaint = StableDiffusionInpaintPipelineLegacy(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
).to(torch_device)
img2img = StableDiffusionImg2ImgPipeline(**inpaint.components, image_encoder=None).to(torch_device)
text2img = StableDiffusionPipeline(**inpaint.components, image_encoder=None).to(torch_device)
prompt = "A painting of a squirrel eating a burger"
generator = torch.manual_seed(0)
image_inpaint = inpaint(
[prompt],
generator=generator,
num_inference_steps=2,
output_type="np",
image=init_image,
mask_image=mask_image,
).images
image_img2img = img2img(
[prompt],
generator=generator,
num_inference_steps=2,
output_type="np",
image=init_image,
).images
image_text2img = text2img(
[prompt],
generator=generator,
num_inference_steps=2,
output_type="np",
).images
assert image_inpaint.shape == (1, 32, 32, 3)
assert image_img2img.shape == (1, 32, 32, 3)
assert image_text2img.shape == (1, 64, 64, 3)
@require_torch_accelerator
def test_pipe_false_offload_warn(self):
unet = self.dummy_cond_unet()
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
sd = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd.enable_model_cpu_offload(device=torch_device)
logger = logging.get_logger("diffusers.pipelines.pipeline_utils")
with CaptureLogger(logger) as cap_logger:
sd.to(torch_device)
assert "It is strongly recommended against doing so" in str(cap_logger)
sd = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
def test_set_scheduler(self):
unet = self.dummy_cond_unet()
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
sd = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
sd.scheduler = DDIMScheduler.from_config(sd.scheduler.config)
assert isinstance(sd.scheduler, DDIMScheduler)
sd.scheduler = DDPMScheduler.from_config(sd.scheduler.config)
assert isinstance(sd.scheduler, DDPMScheduler)
sd.scheduler = PNDMScheduler.from_config(sd.scheduler.config)
assert isinstance(sd.scheduler, PNDMScheduler)
sd.scheduler = LMSDiscreteScheduler.from_config(sd.scheduler.config)
assert isinstance(sd.scheduler, LMSDiscreteScheduler)
sd.scheduler = EulerDiscreteScheduler.from_config(sd.scheduler.config)
assert isinstance(sd.scheduler, EulerDiscreteScheduler)
sd.scheduler = EulerAncestralDiscreteScheduler.from_config(sd.scheduler.config)
assert isinstance(sd.scheduler, EulerAncestralDiscreteScheduler)
sd.scheduler = DPMSolverMultistepScheduler.from_config(sd.scheduler.config)
assert isinstance(sd.scheduler, DPMSolverMultistepScheduler)
def test_set_component_to_none(self):
unet = self.dummy_cond_unet()
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
pipeline = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
generator = torch.Generator(device="cpu").manual_seed(0)
prompt = "This is a flower"
out_image = pipeline(
prompt=prompt,
generator=generator,
num_inference_steps=1,
output_type="np",
).images
pipeline.feature_extractor = None
generator = torch.Generator(device="cpu").manual_seed(0)
out_image_2 = pipeline(
prompt=prompt,
generator=generator,
num_inference_steps=1,
output_type="np",
).images
assert out_image.shape == (1, 64, 64, 3)
assert np.abs(out_image - out_image_2).max() < 1e-3
def test_optional_components_is_none(self):
unet = self.dummy_cond_unet()
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
items = {
"feature_extractor": self.dummy_extractor,
"unet": unet,
"scheduler": scheduler,
"vae": vae,
"text_encoder": bert,
"tokenizer": tokenizer,
"safety_checker": None,
# we don't add an image encoder
}
pipeline = StableDiffusionPipeline(**items)
assert sorted(pipeline.components.keys()) == sorted(["image_encoder"] + list(items.keys()))
assert pipeline.image_encoder is None
def test_set_scheduler_consistency(self):
unet = self.dummy_cond_unet()
pndm = PNDMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
ddim = DDIMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
sd = StableDiffusionPipeline(
unet=unet,
scheduler=pndm,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
pndm_config = sd.scheduler.config
sd.scheduler = DDPMScheduler.from_config(pndm_config)
sd.scheduler = PNDMScheduler.from_config(sd.scheduler.config)
pndm_config_2 = sd.scheduler.config
pndm_config_2 = {k: v for k, v in pndm_config_2.items() if k in pndm_config}
assert dict(pndm_config) == dict(pndm_config_2)
sd = StableDiffusionPipeline(
unet=unet,
scheduler=ddim,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
ddim_config = sd.scheduler.config
sd.scheduler = LMSDiscreteScheduler.from_config(ddim_config)
sd.scheduler = DDIMScheduler.from_config(sd.scheduler.config)
ddim_config_2 = sd.scheduler.config
ddim_config_2 = {k: v for k, v in ddim_config_2.items() if k in ddim_config}
assert dict(ddim_config) == dict(ddim_config_2)
def test_save_safe_serialization(self):
pipeline = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-stable-diffusion-torch")
with tempfile.TemporaryDirectory() as tmpdirname:
pipeline.save_pretrained(tmpdirname, safe_serialization=True)
# Validate that the VAE safetensor exists and are of the correct format
vae_path = os.path.join(tmpdirname, "vae", "diffusion_pytorch_model.safetensors")
assert os.path.exists(vae_path), f"Could not find {vae_path}"
_ = safetensors.torch.load_file(vae_path)
# Validate that the UNet safetensor exists and are of the correct format
unet_path = os.path.join(tmpdirname, "unet", "diffusion_pytorch_model.safetensors")
assert os.path.exists(unet_path), f"Could not find {unet_path}"
_ = safetensors.torch.load_file(unet_path)
# Validate that the text encoder safetensor exists and are of the correct format
text_encoder_path = os.path.join(tmpdirname, "text_encoder", "model.safetensors")
assert os.path.exists(text_encoder_path), f"Could not find {text_encoder_path}"
_ = safetensors.torch.load_file(text_encoder_path)
pipeline = StableDiffusionPipeline.from_pretrained(tmpdirname)
assert pipeline.unet is not None
assert pipeline.vae is not None
assert pipeline.text_encoder is not None
assert pipeline.scheduler is not None
assert pipeline.feature_extractor is not None
def test_no_pytorch_download_when_doing_safetensors(self):
# by default we don't download
with tempfile.TemporaryDirectory() as tmpdirname:
_ = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/diffusers-stable-diffusion-tiny-all", cache_dir=tmpdirname
)
path = os.path.join(
tmpdirname,
"models--hf-internal-testing--diffusers-stable-diffusion-tiny-all",
"snapshots",
"07838d72e12f9bcec1375b0482b80c1d399be843",
"unet",
)
# safetensors exists
assert os.path.exists(os.path.join(path, "diffusion_pytorch_model.safetensors"))
# pytorch does not
assert not os.path.exists(os.path.join(path, "diffusion_pytorch_model.bin"))
def test_no_safetensors_download_when_doing_pytorch(self):
use_safetensors = False
with tempfile.TemporaryDirectory() as tmpdirname:
_ = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/diffusers-stable-diffusion-tiny-all",
cache_dir=tmpdirname,
use_safetensors=use_safetensors,
)
path = os.path.join(
tmpdirname,
"models--hf-internal-testing--diffusers-stable-diffusion-tiny-all",
"snapshots",
"07838d72e12f9bcec1375b0482b80c1d399be843",
"unet",
)
# safetensors does not exists
assert not os.path.exists(os.path.join(path, "diffusion_pytorch_model.safetensors"))
# pytorch does
assert os.path.exists(os.path.join(path, "diffusion_pytorch_model.bin"))
def test_optional_components(self):
unet = self.dummy_cond_unet()
pndm = PNDMScheduler.from_config("hf-internal-testing/tiny-stable-diffusion-torch", subfolder="scheduler")
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
orig_sd = StableDiffusionPipeline(
unet=unet,
scheduler=pndm,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=unet,
feature_extractor=self.dummy_extractor,
)
sd = orig_sd
assert sd.config.requires_safety_checker is True
with tempfile.TemporaryDirectory() as tmpdirname:
sd.save_pretrained(tmpdirname)
# Test that passing None works
sd = StableDiffusionPipeline.from_pretrained(
tmpdirname, feature_extractor=None, safety_checker=None, requires_safety_checker=False
)
assert sd.config.requires_safety_checker is False
assert sd.config.safety_checker == (None, None)
assert sd.config.feature_extractor == (None, None)
with tempfile.TemporaryDirectory() as tmpdirname:
sd.save_pretrained(tmpdirname)
# Test that loading previous None works
sd = StableDiffusionPipeline.from_pretrained(tmpdirname)
assert sd.config.requires_safety_checker is False
assert sd.config.safety_checker == (None, None)
assert sd.config.feature_extractor == (None, None)
orig_sd.save_pretrained(tmpdirname)
# Test that loading without any directory works
shutil.rmtree(os.path.join(tmpdirname, "safety_checker"))
with open(os.path.join(tmpdirname, sd.config_name)) as f:
config = json.load(f)
config["safety_checker"] = [None, None]
with open(os.path.join(tmpdirname, sd.config_name), "w") as f:
json.dump(config, f)
sd = StableDiffusionPipeline.from_pretrained(tmpdirname, requires_safety_checker=False)
sd.save_pretrained(tmpdirname)
sd = StableDiffusionPipeline.from_pretrained(tmpdirname)
assert sd.config.requires_safety_checker is False
assert sd.config.safety_checker == (None, None)
assert sd.config.feature_extractor == (None, None)
# Test that loading from deleted model index works
with open(os.path.join(tmpdirname, sd.config_name)) as f:
config = json.load(f)
del config["safety_checker"]
del config["feature_extractor"]
with open(os.path.join(tmpdirname, sd.config_name), "w") as f:
json.dump(config, f)
sd = StableDiffusionPipeline.from_pretrained(tmpdirname)
assert sd.config.requires_safety_checker is False
assert sd.config.safety_checker == (None, None)
assert sd.config.feature_extractor == (None, None)
with tempfile.TemporaryDirectory() as tmpdirname:
sd.save_pretrained(tmpdirname)
# Test that partially loading works
sd = StableDiffusionPipeline.from_pretrained(tmpdirname, feature_extractor=self.dummy_extractor)
assert sd.config.requires_safety_checker is False
assert sd.config.safety_checker == (None, None)
assert sd.config.feature_extractor != (None, None)
# Test that partially loading works
sd = StableDiffusionPipeline.from_pretrained(
tmpdirname,
feature_extractor=self.dummy_extractor,
safety_checker=unet,
requires_safety_checker=[True, True],
)
assert sd.config.requires_safety_checker == [True, True]
assert sd.config.safety_checker != (None, None)
assert sd.config.feature_extractor != (None, None)
with tempfile.TemporaryDirectory() as tmpdirname:
sd.save_pretrained(tmpdirname)
sd = StableDiffusionPipeline.from_pretrained(tmpdirname, feature_extractor=self.dummy_extractor)
assert sd.config.requires_safety_checker == [True, True]
assert sd.config.safety_checker != (None, None)
assert sd.config.feature_extractor != (None, None)
def test_name_or_path(self):
model_path = "hf-internal-testing/tiny-stable-diffusion-torch"
sd = DiffusionPipeline.from_pretrained(model_path)
assert sd.name_or_path == model_path
with tempfile.TemporaryDirectory() as tmpdirname:
sd.save_pretrained(tmpdirname)
sd = DiffusionPipeline.from_pretrained(tmpdirname)
assert sd.name_or_path == tmpdirname
def test_error_no_variant_available(self):
variant = "fp16"
with self.assertRaises(ValueError) as error_context:
_ = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/diffusers-stable-diffusion-tiny-all", variant=variant
)
assert "but no such modeling files are available" in str(error_context.exception)
assert variant in str(error_context.exception)
def test_pipe_to(self):
unet = self.dummy_cond_unet()
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
sd = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
device_type = torch.device(torch_device).type
sd1 = sd.to(device_type)
sd2 = sd.to(torch.device(device_type))
sd3 = sd.to(device_type, torch.float32)
sd4 = sd.to(device=device_type)
sd5 = sd.to(torch_device=device_type)
sd6 = sd.to(device_type, dtype=torch.float32)
sd7 = sd.to(device_type, torch_dtype=torch.float32)
assert sd1.device.type == device_type
assert sd2.device.type == device_type
assert sd3.device.type == device_type
assert sd4.device.type == device_type
assert sd5.device.type == device_type
assert sd6.device.type == device_type
assert sd7.device.type == device_type
sd1 = sd.to(torch.float16)
sd2 = sd.to(None, torch.float16)
sd3 = sd.to(dtype=torch.float16)
sd4 = sd.to(dtype=torch.float16)
sd5 = sd.to(None, dtype=torch.float16)
sd6 = sd.to(None, torch_dtype=torch.float16)
assert sd1.dtype == torch.float16
assert sd2.dtype == torch.float16
assert sd3.dtype == torch.float16
assert sd4.dtype == torch.float16
assert sd5.dtype == torch.float16
assert sd6.dtype == torch.float16
sd1 = sd.to(device=device_type, dtype=torch.float16)
sd2 = sd.to(torch_device=device_type, torch_dtype=torch.float16)
sd3 = sd.to(device_type, torch.float16)
assert sd1.dtype == torch.float16
assert sd2.dtype == torch.float16
assert sd3.dtype == torch.float16
assert sd1.device.type == device_type
assert sd2.device.type == device_type
assert sd3.device.type == device_type
def test_pipe_same_device_id_offload(self):
unet = self.dummy_cond_unet()
scheduler = PNDMScheduler(skip_prk_steps=True)
vae = self.dummy_vae
bert = self.dummy_text_encoder
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
sd = StableDiffusionPipeline(
unet=unet,
scheduler=scheduler,
vae=vae,
text_encoder=bert,
tokenizer=tokenizer,
safety_checker=None,
feature_extractor=self.dummy_extractor,
)
# `enable_model_cpu_offload` detects device type when not passed
# `enable_model_cpu_offload` raises ValueError if detected device is `cpu`
# This test only checks whether `_offload_gpu_id` is set correctly
# So the device passed can be any supported `torch.device` type
# This allows us to keep the test under `PipelineFastTests`
sd.enable_model_cpu_offload(gpu_id=5, device="cuda")
assert sd._offload_gpu_id == 5
sd.maybe_free_model_hooks()
assert sd._offload_gpu_id == 5
@parameterized.expand([torch.float32, torch.float16])
@require_hf_hub_version_greater("0.26.5")
@require_transformers_version_greater("4.47.1")
def test_load_dduf_from_hub(self, dtype):
with tempfile.TemporaryDirectory() as tmpdir:
pipe = DiffusionPipeline.from_pretrained(
"DDUF/tiny-flux-dev-pipe-dduf", dduf_file="fluxpipeline.dduf", cache_dir=tmpdir, torch_dtype=dtype
).to(torch_device)
out_1 = pipe(prompt="dog", num_inference_steps=5, generator=torch.manual_seed(0), output_type="np").images
pipe.save_pretrained(tmpdir)
loaded_pipe = DiffusionPipeline.from_pretrained(tmpdir, torch_dtype=dtype).to(torch_device)
out_2 = loaded_pipe(
prompt="dog", num_inference_steps=5, generator=torch.manual_seed(0), output_type="np"
).images
self.assertTrue(np.allclose(out_1, out_2, atol=1e-4, rtol=1e-4))
@require_hf_hub_version_greater("0.26.5")
@require_transformers_version_greater("4.47.1")
def test_load_dduf_from_hub_local_files_only(self):
with tempfile.TemporaryDirectory() as tmpdir:
pipe = DiffusionPipeline.from_pretrained(
"DDUF/tiny-flux-dev-pipe-dduf", dduf_file="fluxpipeline.dduf", cache_dir=tmpdir
).to(torch_device)
out_1 = pipe(prompt="dog", num_inference_steps=5, generator=torch.manual_seed(0), output_type="np").images
local_files_pipe = DiffusionPipeline.from_pretrained(
"DDUF/tiny-flux-dev-pipe-dduf", dduf_file="fluxpipeline.dduf", cache_dir=tmpdir, local_files_only=True
).to(torch_device)
out_2 = local_files_pipe(
prompt="dog", num_inference_steps=5, generator=torch.manual_seed(0), output_type="np"
).images
self.assertTrue(np.allclose(out_1, out_2, atol=1e-4, rtol=1e-4))
def test_dduf_raises_error_with_custom_pipeline(self):
with self.assertRaises(NotImplementedError):
_ = DiffusionPipeline.from_pretrained(
"DDUF/tiny-flux-dev-pipe-dduf", dduf_file="fluxpipeline.dduf", custom_pipeline="my_pipeline"
)
def test_dduf_raises_error_with_connected_pipeline(self):
with self.assertRaises(NotImplementedError):
_ = DiffusionPipeline.from_pretrained(
"DDUF/tiny-flux-dev-pipe-dduf", dduf_file="fluxpipeline.dduf", load_connected_pipeline=True
)
def test_wrong_model(self):
tokenizer = CLIPTokenizer.from_pretrained("hf-internal-testing/tiny-random-clip")
with self.assertRaises(ValueError) as error_context:
_ = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/diffusers-stable-diffusion-tiny-all", text_encoder=tokenizer
)
assert "is of type" in str(error_context.exception)
assert "but should be" in str(error_context.exception)
@require_hf_hub_version_greater("0.26.5")
@require_transformers_version_greater("4.47.1")
def test_dduf_load_sharded_checkpoint_diffusion_model(self):
with tempfile.TemporaryDirectory() as tmpdir:
pipe = DiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-flux-dev-pipe-sharded-checkpoint-DDUF",
dduf_file="tiny-flux-dev-pipe-sharded-checkpoint.dduf",
cache_dir=tmpdir,
).to(torch_device)
out_1 = pipe(prompt="dog", num_inference_steps=5, generator=torch.manual_seed(0), output_type="np").images
pipe.save_pretrained(tmpdir)
loaded_pipe = DiffusionPipeline.from_pretrained(tmpdir).to(torch_device)
out_2 = loaded_pipe(
prompt="dog", num_inference_steps=5, generator=torch.manual_seed(0), output_type="np"
).images
self.assertTrue(np.allclose(out_1, out_2, atol=1e-4, rtol=1e-4))
@slow
@require_torch_accelerator
class PipelineSlowTests(unittest.TestCase):
def setUp(self):
# clean up the VRAM before each test
super().setUp()
gc.collect()
backend_empty_cache(torch_device)
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
backend_empty_cache(torch_device)
def test_smart_download(self):
model_id = "hf-internal-testing/unet-pipeline-dummy"
with tempfile.TemporaryDirectory() as tmpdirname:
_ = DiffusionPipeline.from_pretrained(model_id, cache_dir=tmpdirname, force_download=True)
local_repo_name = "--".join(["models"] + model_id.split("/"))
snapshot_dir = os.path.join(tmpdirname, local_repo_name, "snapshots")
snapshot_dir = os.path.join(snapshot_dir, os.listdir(snapshot_dir)[0])
# inspect all downloaded files to make sure that everything is included
assert os.path.isfile(os.path.join(snapshot_dir, DiffusionPipeline.config_name))
assert os.path.isfile(os.path.join(snapshot_dir, CONFIG_NAME))
assert os.path.isfile(os.path.join(snapshot_dir, SCHEDULER_CONFIG_NAME))
assert os.path.isfile(os.path.join(snapshot_dir, WEIGHTS_NAME))
assert os.path.isfile(os.path.join(snapshot_dir, "scheduler", SCHEDULER_CONFIG_NAME))
assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
assert os.path.isfile(os.path.join(snapshot_dir, "unet", WEIGHTS_NAME))
# let's make sure the super large numpy file:
# https://huggingface.co/hf-internal-testing/unet-pipeline-dummy/blob/main/big_array.npy
# is not downloaded, but all the expected ones
assert not os.path.isfile(os.path.join(snapshot_dir, "big_array.npy"))
def test_warning_unused_kwargs(self):
model_id = "hf-internal-testing/unet-pipeline-dummy"
logger = logging.get_logger("diffusers.pipelines")
with tempfile.TemporaryDirectory() as tmpdirname:
with CaptureLogger(logger) as cap_logger:
DiffusionPipeline.from_pretrained(
model_id,
not_used=True,
cache_dir=tmpdirname,
force_download=True,
)
assert (
cap_logger.out.strip().split("\n")[-1]
== "Keyword arguments {'not_used': True} are not expected by DDPMPipeline and will be ignored."
)
def test_from_save_pretrained(self):
# 1. Load models
model = UNet2DModel(
block_out_channels=(32, 64),
layers_per_block=2,
sample_size=32,
in_channels=3,
out_channels=3,
down_block_types=("DownBlock2D", "AttnDownBlock2D"),
up_block_types=("AttnUpBlock2D", "UpBlock2D"),
)
scheduler = DDPMScheduler(num_train_timesteps=10)
ddpm = DDPMPipeline(model, scheduler)
ddpm.to(torch_device)
ddpm.set_progress_bar_config(disable=None)
with tempfile.TemporaryDirectory() as tmpdirname:
ddpm.save_pretrained(tmpdirname)
new_ddpm = DDPMPipeline.from_pretrained(tmpdirname)
new_ddpm.to(torch_device)
generator = torch.Generator(device=torch_device).manual_seed(0)
image = ddpm(generator=generator, num_inference_steps=5, output_type="np").images
generator = torch.Generator(device=torch_device).manual_seed(0)
new_image = new_ddpm(generator=generator, num_inference_steps=5, output_type="np").images
assert np.abs(image - new_image).max() < 1e-5, "Models don't give the same forward pass"
@is_torch_compile
@require_torch_2
@unittest.skipIf(
get_python_version == (3, 12),
reason="Torch Dynamo isn't yet supported for Python 3.12.",
)
def test_from_save_pretrained_dynamo(self):
torch.compiler.rest()
with torch._inductor.utils.fresh_inductor_cache():
run_test_in_subprocess(test_case=self, target_func=_test_from_save_pretrained_dynamo, inputs=None)
def test_from_pretrained_hub(self):
model_path = "google/ddpm-cifar10-32"
scheduler = DDPMScheduler(num_train_timesteps=10)
ddpm = DDPMPipeline.from_pretrained(model_path, scheduler=scheduler)
ddpm = ddpm.to(torch_device)
ddpm.set_progress_bar_config(disable=None)
ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
ddpm_from_hub = ddpm_from_hub.to(torch_device)
ddpm_from_hub.set_progress_bar_config(disable=None)
generator = torch.Generator(device=torch_device).manual_seed(0)
image = ddpm(generator=generator, num_inference_steps=5, output_type="np").images
generator = torch.Generator(device=torch_device).manual_seed(0)
new_image = ddpm_from_hub(generator=generator, num_inference_steps=5, output_type="np").images
assert np.abs(image - new_image).max() < 1e-5, "Models don't give the same forward pass"
def test_from_pretrained_hub_pass_model(self):
model_path = "google/ddpm-cifar10-32"
scheduler = DDPMScheduler(num_train_timesteps=10)
# pass unet into DiffusionPipeline
unet = UNet2DModel.from_pretrained(model_path)
ddpm_from_hub_custom_model = DiffusionPipeline.from_pretrained(model_path, unet=unet, scheduler=scheduler)
ddpm_from_hub_custom_model = ddpm_from_hub_custom_model.to(torch_device)
ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
ddpm_from_hub = DiffusionPipeline.from_pretrained(model_path, scheduler=scheduler)
ddpm_from_hub = ddpm_from_hub.to(torch_device)
ddpm_from_hub_custom_model.set_progress_bar_config(disable=None)
generator = torch.Generator(device=torch_device).manual_seed(0)
image = ddpm_from_hub_custom_model(generator=generator, num_inference_steps=5, output_type="np").images
generator = torch.Generator(device=torch_device).manual_seed(0)
new_image = ddpm_from_hub(generator=generator, num_inference_steps=5, output_type="np").images
assert np.abs(image - new_image).max() < 1e-5, "Models don't give the same forward pass"
def test_output_format(self):
model_path = "google/ddpm-cifar10-32"
scheduler = DDIMScheduler.from_pretrained(model_path)
pipe = DDIMPipeline.from_pretrained(model_path, scheduler=scheduler)
pipe.to(torch_device)
pipe.set_progress_bar_config(disable=None)
images = pipe(output_type="np").images
assert images.shape == (1, 32, 32, 3)
assert isinstance(images, np.ndarray)
images = pipe(output_type="pil", num_inference_steps=4).images
assert isinstance(images, list)
assert len(images) == 1
assert isinstance(images[0], PIL.Image.Image)
# use PIL by default
images = pipe(num_inference_steps=4).images
assert isinstance(images, list)
assert isinstance(images[0], PIL.Image.Image)
@require_flax
def test_from_flax_from_pt(self):
pipe_pt = StableDiffusionPipeline.from_pretrained(
"hf-internal-testing/tiny-stable-diffusion-torch", safety_checker=None
)
pipe_pt.to(torch_device)
from diffusers import FlaxStableDiffusionPipeline
with tempfile.TemporaryDirectory() as tmpdirname:
pipe_pt.save_pretrained(tmpdirname)
pipe_flax, params = FlaxStableDiffusionPipeline.from_pretrained(
tmpdirname, safety_checker=None, from_pt=True
)
with tempfile.TemporaryDirectory() as tmpdirname:
pipe_flax.save_pretrained(tmpdirname, params=params)
pipe_pt_2 = StableDiffusionPipeline.from_pretrained(tmpdirname, safety_checker=None, from_flax=True)
pipe_pt_2.to(torch_device)
prompt = "Hello"
generator = torch.manual_seed(0)
image_0 = pipe_pt(
[prompt],
generator=generator,
num_inference_steps=2,
output_type="np",
).images[0]
generator = torch.manual_seed(0)
image_1 = pipe_pt_2(
[prompt],
generator=generator,
num_inference_steps=2,
output_type="np",
).images[0]
assert np.abs(image_0 - image_1).sum() < 1e-5, "Models don't give the same forward pass"
@require_compel
def test_weighted_prompts_compel(self):
from compel import Compel
pipe = StableDiffusionPipeline.from_pretrained("CompVis/stable-diffusion-v1-4")
pipe.scheduler = UniPCMultistepScheduler.from_config(pipe.scheduler.config)
pipe.enable_model_cpu_offload(device=torch_device)
pipe.enable_attention_slicing()
compel = Compel(tokenizer=pipe.tokenizer, text_encoder=pipe.text_encoder)
prompt = "a red cat playing with a ball{}"
prompts = [prompt.format(s) for s in ["", "++", "--"]]
prompt_embeds = compel(prompts)
generator = [torch.Generator(device="cpu").manual_seed(33) for _ in range(prompt_embeds.shape[0])]
images = pipe(
prompt_embeds=prompt_embeds, generator=generator, num_inference_steps=20, output_type="np"
).images
for i, image in enumerate(images):
expected_image = load_numpy(
"https://huggingface.co/datasets/hf-internal-testing/diffusers-images/resolve/main"
f"/compel/forest_{i}.npy"
)
assert np.abs(image - expected_image).max() < 3e-1
@nightly
@require_torch_accelerator
class PipelineNightlyTests(unittest.TestCase):
def setUp(self):
# clean up the VRAM before each test
super().setUp()
gc.collect()
backend_empty_cache(torch_device)
def tearDown(self):
# clean up the VRAM after each test
super().tearDown()
gc.collect()
backend_empty_cache(torch_device)
def test_ddpm_ddim_equality_batched(self):
seed = 0
model_id = "google/ddpm-cifar10-32"
unet = UNet2DModel.from_pretrained(model_id)
ddpm_scheduler = DDPMScheduler()
ddim_scheduler = DDIMScheduler()
ddpm = DDPMPipeline(unet=unet, scheduler=ddpm_scheduler)
ddpm.to(torch_device)
ddpm.set_progress_bar_config(disable=None)
ddim = DDIMPipeline(unet=unet, scheduler=ddim_scheduler)
ddim.to(torch_device)
ddim.set_progress_bar_config(disable=None)
generator = torch.Generator(device=torch_device).manual_seed(seed)
ddpm_images = ddpm(batch_size=2, generator=generator, output_type="np").images
generator = torch.Generator(device=torch_device).manual_seed(seed)
ddim_images = ddim(
batch_size=2,
generator=generator,
num_inference_steps=1000,
eta=1.0,
output_type="np",
use_clipped_model_output=True, # Need this to make DDIM match DDPM
).images
# the values aren't exactly equal, but the images look the same visually
assert np.abs(ddpm_images - ddim_images).max() < 1e-1
@slow
@require_torch_2
@require_torch_accelerator
@require_peft_backend
@require_peft_version_greater("0.14.0")
@is_torch_compile
class TestLoraHotSwappingForPipeline(unittest.TestCase):
"""Test that hotswapping does not result in recompilation in a pipeline.
We're not extensively testing the hotswapping functionality since it is implemented in PEFT and is extensively
tested there. The goal of this test is specifically to ensure that hotswapping with diffusers does not require
recompilation.
See
https://github.com/huggingface/peft/blob/eaab05e18d51fb4cce20a73c9acd82a00c013b83/tests/test_gpu_examples.py#L4252
for the analogous PEFT test.
"""
def tearDown(self):
# It is critical that the dynamo cache is reset for each test. Otherwise, if the test re-uses the same model,
# there will be recompilation errors, as torch caches the model when run in the same process.
super().tearDown()
torch.compiler.reset()
gc.collect()
backend_empty_cache(torch_device)
def get_unet_lora_config(self, lora_rank, lora_alpha, target_modules):
# from diffusers test_models_unet_2d_condition.py
from peft import LoraConfig
unet_lora_config = LoraConfig(
r=lora_rank,
lora_alpha=lora_alpha,
target_modules=target_modules,
init_lora_weights=False,
use_dora=False,
)
return unet_lora_config
def get_lora_state_dicts(self, modules_to_save, adapter_name):
from peft import get_peft_model_state_dict
state_dicts = {}
for module_name, module in modules_to_save.items():
if module is not None:
state_dicts[f"{module_name}_lora_layers"] = get_peft_model_state_dict(
module, adapter_name=adapter_name
)
return state_dicts
def get_dummy_input(self):
pipeline_inputs = {
"prompt": "A painting of a squirrel eating a burger",
"num_inference_steps": 5,
"guidance_scale": 6.0,
"output_type": "np",
"return_dict": False,
}
return pipeline_inputs
def check_pipeline_hotswap(self, do_compile, rank0, rank1, target_modules0, target_modules1=None):
"""
Check that hotswapping works on a pipeline.
Steps:
- create 2 LoRA adapters and save them
- load the first adapter
- hotswap the second adapter
- check that the outputs are correct
- optionally compile the model
Note: We set rank == alpha here because save_lora_adapter does not save the alpha scalings, thus the test would
fail if the values are different. Since rank != alpha does not matter for the purpose of this test, this is
fine.
"""
# create 2 adapters with different ranks and alphas
dummy_input = self.get_dummy_input()
pipeline = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-sd-pipe").to(torch_device)
alpha0, alpha1 = rank0, rank1
max_rank = max([rank0, rank1])
if target_modules1 is None:
target_modules1 = target_modules0[:]
lora_config0 = self.get_unet_lora_config(rank0, alpha0, target_modules0)
lora_config1 = self.get_unet_lora_config(rank1, alpha1, target_modules1)
torch.manual_seed(0)
pipeline.unet.add_adapter(lora_config0, adapter_name="adapter0")
output0_before = pipeline(**dummy_input, generator=torch.manual_seed(0))[0]
torch.manual_seed(1)
pipeline.unet.add_adapter(lora_config1, adapter_name="adapter1")
pipeline.unet.set_adapter("adapter1")
output1_before = pipeline(**dummy_input, generator=torch.manual_seed(0))[0]
# sanity check
tol = 1e-3
assert not np.allclose(output0_before, output1_before, atol=tol, rtol=tol)
assert not (output0_before == 0).all()
assert not (output1_before == 0).all()
with tempfile.TemporaryDirectory() as tmp_dirname:
# save the adapter checkpoints
lora0_state_dicts = self.get_lora_state_dicts({"unet": pipeline.unet}, adapter_name="adapter0")
StableDiffusionPipeline.save_lora_weights(
save_directory=os.path.join(tmp_dirname, "adapter0"), safe_serialization=True, **lora0_state_dicts
)
lora1_state_dicts = self.get_lora_state_dicts({"unet": pipeline.unet}, adapter_name="adapter1")
StableDiffusionPipeline.save_lora_weights(
save_directory=os.path.join(tmp_dirname, "adapter1"), safe_serialization=True, **lora1_state_dicts
)
del pipeline
# load the first adapter
pipeline = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-sd-pipe").to(torch_device)
if do_compile or (rank0 != rank1):
# no need to prepare if the model is not compiled or if the ranks are identical
pipeline.enable_lora_hotswap(target_rank=max_rank)
file_name0 = os.path.join(tmp_dirname, "adapter0", "pytorch_lora_weights.safetensors")
file_name1 = os.path.join(tmp_dirname, "adapter1", "pytorch_lora_weights.safetensors")
pipeline.load_lora_weights(file_name0)
if do_compile:
pipeline.unet = torch.compile(pipeline.unet, mode="reduce-overhead")
output0_after = pipeline(**dummy_input, generator=torch.manual_seed(0))[0]
# sanity check: still same result
assert np.allclose(output0_before, output0_after, atol=tol, rtol=tol)
# hotswap the 2nd adapter
pipeline.load_lora_weights(file_name1, hotswap=True, adapter_name="default_0")
output1_after = pipeline(**dummy_input, generator=torch.manual_seed(0))[0]
# sanity check: since it's the same LoRA, the results should be identical
assert np.allclose(output1_before, output1_after, atol=tol, rtol=tol)
@parameterized.expand([(11, 11), (7, 13), (13, 7)]) # important to test small to large and vice versa
def test_hotswapping_pipeline(self, rank0, rank1):
self.check_pipeline_hotswap(
do_compile=False, rank0=rank0, rank1=rank1, target_modules0=["to_q", "to_k", "to_v", "to_out.0"]
)
@parameterized.expand([(11, 11), (7, 13), (13, 7)]) # important to test small to large and vice versa
def test_hotswapping_compiled_pipline_linear(self, rank0, rank1):
# It's important to add this context to raise an error on recompilation
target_modules = ["to_q", "to_k", "to_v", "to_out.0"]
with torch._dynamo.config.patch(error_on_recompile=True), torch._inductor.utils.fresh_inductor_cache():
self.check_pipeline_hotswap(do_compile=True, rank0=rank0, rank1=rank1, target_modules0=target_modules)
@parameterized.expand([(11, 11), (7, 13), (13, 7)]) # important to test small to large and vice versa
def test_hotswapping_compiled_pipline_conv2d(self, rank0, rank1):
# It's important to add this context to raise an error on recompilation
target_modules = ["conv", "conv1", "conv2"]
with torch._dynamo.config.patch(error_on_recompile=True), torch._inductor.utils.fresh_inductor_cache():
self.check_pipeline_hotswap(do_compile=True, rank0=rank0, rank1=rank1, target_modules0=target_modules)
@parameterized.expand([(11, 11), (7, 13), (13, 7)]) # important to test small to large and vice versa
def test_hotswapping_compiled_pipline_both_linear_and_conv2d(self, rank0, rank1):
# It's important to add this context to raise an error on recompilation
target_modules = ["to_q", "conv"]
with torch._dynamo.config.patch(error_on_recompile=True), torch._inductor.utils.fresh_inductor_cache():
self.check_pipeline_hotswap(do_compile=True, rank0=rank0, rank1=rank1, target_modules0=target_modules)
def test_enable_lora_hotswap_called_after_adapter_added_raises(self):
# ensure that enable_lora_hotswap is called before loading the first adapter
lora_config = self.get_unet_lora_config(8, 8, target_modules=["to_q"])
pipeline = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-sd-pipe").to(torch_device)
pipeline.unet.add_adapter(lora_config)
msg = re.escape("Call `enable_lora_hotswap` before loading the first adapter.")
with self.assertRaisesRegex(RuntimeError, msg):
pipeline.enable_lora_hotswap(target_rank=32)
def test_enable_lora_hotswap_called_after_adapter_added_warns(self):
# ensure that enable_lora_hotswap is called before loading the first adapter
from diffusers.loaders.peft import logger
lora_config = self.get_unet_lora_config(8, 8, target_modules=["to_q"])
pipeline = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-sd-pipe").to(torch_device)
pipeline.unet.add_adapter(lora_config)
msg = (
"It is recommended to call `enable_lora_hotswap` before loading the first adapter to avoid recompilation."
)
with self.assertLogs(logger=logger, level="WARNING") as cm:
pipeline.enable_lora_hotswap(target_rank=32, check_compiled="warn")
assert any(msg in log for log in cm.output)
def test_enable_lora_hotswap_called_after_adapter_added_ignore(self):
# check possibility to ignore the error/warning
lora_config = self.get_unet_lora_config(8, 8, target_modules=["to_q"])
pipeline = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-sd-pipe").to(torch_device)
pipeline.unet.add_adapter(lora_config)
with warnings.catch_warnings(record=True) as w:
warnings.simplefilter("always") # Capture all warnings
pipeline.enable_lora_hotswap(target_rank=32, check_compiled="warn")
self.assertEqual(len(w), 0, f"Expected no warnings, but got: {[str(warn.message) for warn in w]}")
def test_enable_lora_hotswap_wrong_check_compiled_argument_raises(self):
# check that wrong argument value raises an error
lora_config = self.get_unet_lora_config(8, 8, target_modules=["to_q"])
pipeline = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-sd-pipe").to(torch_device)
pipeline.unet.add_adapter(lora_config)
msg = re.escape("check_compiles should be one of 'error', 'warn', or 'ignore', got 'wrong-argument' instead.")
with self.assertRaisesRegex(ValueError, msg):
pipeline.enable_lora_hotswap(target_rank=32, check_compiled="wrong-argument")
def test_hotswap_second_adapter_targets_more_layers_raises(self):
# check the error and log
from diffusers.loaders.peft import logger
# at the moment, PEFT requires the 2nd adapter to target the same or a subset of layers
target_modules0 = ["to_q"]
target_modules1 = ["to_q", "to_k"]
with self.assertRaises(RuntimeError): # peft raises RuntimeError
with self.assertLogs(logger=logger, level="ERROR") as cm:
self.check_pipeline_hotswap(
do_compile=True, rank0=8, rank1=8, target_modules0=target_modules0, target_modules1=target_modules1
)
assert any("Hotswapping adapter0 was unsuccessful" in log for log in cm.output)
def test_hotswap_component_not_supported_raises(self):
# right now, not some components don't support hotswapping, e.g. the text_encoder
from peft import LoraConfig
pipeline = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-sd-pipe").to(torch_device)
lora_config0 = LoraConfig(target_modules=["q_proj"])
lora_config1 = LoraConfig(target_modules=["q_proj"])
pipeline.text_encoder.add_adapter(lora_config0, adapter_name="adapter0")
pipeline.text_encoder.add_adapter(lora_config1, adapter_name="adapter1")
with tempfile.TemporaryDirectory() as tmp_dirname:
# save the adapter checkpoints
lora0_state_dicts = self.get_lora_state_dicts(
{"text_encoder": pipeline.text_encoder}, adapter_name="adapter0"
)
StableDiffusionPipeline.save_lora_weights(
save_directory=os.path.join(tmp_dirname, "adapter0"), safe_serialization=True, **lora0_state_dicts
)
lora1_state_dicts = self.get_lora_state_dicts(
{"text_encoder": pipeline.text_encoder}, adapter_name="adapter1"
)
StableDiffusionPipeline.save_lora_weights(
save_directory=os.path.join(tmp_dirname, "adapter1"), safe_serialization=True, **lora1_state_dicts
)
del pipeline
# load the first adapter
pipeline = StableDiffusionPipeline.from_pretrained("hf-internal-testing/tiny-sd-pipe").to(torch_device)
file_name0 = os.path.join(tmp_dirname, "adapter0", "pytorch_lora_weights.safetensors")
file_name1 = os.path.join(tmp_dirname, "adapter1", "pytorch_lora_weights.safetensors")
pipeline.load_lora_weights(file_name0)
msg = re.escape(
"At the moment, hotswapping is not supported for text encoders, please pass `hotswap=False`"
)
with self.assertRaisesRegex(ValueError, msg):
pipeline.load_lora_weights(file_name1, hotswap=True, adapter_name="default_0")
|