File size: 24,638 Bytes
22a452a
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
import argparse
import pathlib
from typing import Any, Dict, Tuple

import torch
from accelerate import init_empty_weights
from huggingface_hub import hf_hub_download, snapshot_download
from safetensors.torch import load_file
from transformers import AutoProcessor, AutoTokenizer, CLIPVisionModelWithProjection, UMT5EncoderModel

from diffusers import (
    AutoencoderKLWan,
    UniPCMultistepScheduler,
    WanImageToVideoPipeline,
    WanPipeline,
    WanTransformer3DModel,
    WanVACEPipeline,
    WanVACETransformer3DModel,
)


TRANSFORMER_KEYS_RENAME_DICT = {
    "time_embedding.0": "condition_embedder.time_embedder.linear_1",
    "time_embedding.2": "condition_embedder.time_embedder.linear_2",
    "text_embedding.0": "condition_embedder.text_embedder.linear_1",
    "text_embedding.2": "condition_embedder.text_embedder.linear_2",
    "time_projection.1": "condition_embedder.time_proj",
    "head.modulation": "scale_shift_table",
    "head.head": "proj_out",
    "modulation": "scale_shift_table",
    "ffn.0": "ffn.net.0.proj",
    "ffn.2": "ffn.net.2",
    # Hack to swap the layer names
    # The original model calls the norms in following order: norm1, norm3, norm2
    # We convert it to: norm1, norm2, norm3
    "norm2": "norm__placeholder",
    "norm3": "norm2",
    "norm__placeholder": "norm3",
    # For the I2V model
    "img_emb.proj.0": "condition_embedder.image_embedder.norm1",
    "img_emb.proj.1": "condition_embedder.image_embedder.ff.net.0.proj",
    "img_emb.proj.3": "condition_embedder.image_embedder.ff.net.2",
    "img_emb.proj.4": "condition_embedder.image_embedder.norm2",
    # for the FLF2V model
    "img_emb.emb_pos": "condition_embedder.image_embedder.pos_embed",
    # Add attention component mappings
    "self_attn.q": "attn1.to_q",
    "self_attn.k": "attn1.to_k",
    "self_attn.v": "attn1.to_v",
    "self_attn.o": "attn1.to_out.0",
    "self_attn.norm_q": "attn1.norm_q",
    "self_attn.norm_k": "attn1.norm_k",
    "cross_attn.q": "attn2.to_q",
    "cross_attn.k": "attn2.to_k",
    "cross_attn.v": "attn2.to_v",
    "cross_attn.o": "attn2.to_out.0",
    "cross_attn.norm_q": "attn2.norm_q",
    "cross_attn.norm_k": "attn2.norm_k",
    "attn2.to_k_img": "attn2.add_k_proj",
    "attn2.to_v_img": "attn2.add_v_proj",
    "attn2.norm_k_img": "attn2.norm_added_k",
}

VACE_TRANSFORMER_KEYS_RENAME_DICT = {
    "time_embedding.0": "condition_embedder.time_embedder.linear_1",
    "time_embedding.2": "condition_embedder.time_embedder.linear_2",
    "text_embedding.0": "condition_embedder.text_embedder.linear_1",
    "text_embedding.2": "condition_embedder.text_embedder.linear_2",
    "time_projection.1": "condition_embedder.time_proj",
    "head.modulation": "scale_shift_table",
    "head.head": "proj_out",
    "modulation": "scale_shift_table",
    "ffn.0": "ffn.net.0.proj",
    "ffn.2": "ffn.net.2",
    # Hack to swap the layer names
    # The original model calls the norms in following order: norm1, norm3, norm2
    # We convert it to: norm1, norm2, norm3
    "norm2": "norm__placeholder",
    "norm3": "norm2",
    "norm__placeholder": "norm3",
    # # For the I2V model
    # "img_emb.proj.0": "condition_embedder.image_embedder.norm1",
    # "img_emb.proj.1": "condition_embedder.image_embedder.ff.net.0.proj",
    # "img_emb.proj.3": "condition_embedder.image_embedder.ff.net.2",
    # "img_emb.proj.4": "condition_embedder.image_embedder.norm2",
    # # for the FLF2V model
    # "img_emb.emb_pos": "condition_embedder.image_embedder.pos_embed",
    # Add attention component mappings
    "self_attn.q": "attn1.to_q",
    "self_attn.k": "attn1.to_k",
    "self_attn.v": "attn1.to_v",
    "self_attn.o": "attn1.to_out.0",
    "self_attn.norm_q": "attn1.norm_q",
    "self_attn.norm_k": "attn1.norm_k",
    "cross_attn.q": "attn2.to_q",
    "cross_attn.k": "attn2.to_k",
    "cross_attn.v": "attn2.to_v",
    "cross_attn.o": "attn2.to_out.0",
    "cross_attn.norm_q": "attn2.norm_q",
    "cross_attn.norm_k": "attn2.norm_k",
    "attn2.to_k_img": "attn2.add_k_proj",
    "attn2.to_v_img": "attn2.add_v_proj",
    "attn2.norm_k_img": "attn2.norm_added_k",
    "before_proj": "proj_in",
    "after_proj": "proj_out",
}

TRANSFORMER_SPECIAL_KEYS_REMAP = {}
VACE_TRANSFORMER_SPECIAL_KEYS_REMAP = {}


def update_state_dict_(state_dict: Dict[str, Any], old_key: str, new_key: str) -> Dict[str, Any]:
    state_dict[new_key] = state_dict.pop(old_key)


def load_sharded_safetensors(dir: pathlib.Path):
    file_paths = list(dir.glob("diffusion_pytorch_model*.safetensors"))
    state_dict = {}
    for path in file_paths:
        state_dict.update(load_file(path))
    return state_dict


def get_transformer_config(model_type: str) -> Tuple[Dict[str, Any], ...]:
    if model_type == "Wan-T2V-1.3B":
        config = {
            "model_id": "StevenZhang/Wan2.1-T2V-1.3B-Diff",
            "diffusers_config": {
                "added_kv_proj_dim": None,
                "attention_head_dim": 128,
                "cross_attn_norm": True,
                "eps": 1e-06,
                "ffn_dim": 8960,
                "freq_dim": 256,
                "in_channels": 16,
                "num_attention_heads": 12,
                "num_layers": 30,
                "out_channels": 16,
                "patch_size": [1, 2, 2],
                "qk_norm": "rms_norm_across_heads",
                "text_dim": 4096,
            },
        }
        RENAME_DICT = TRANSFORMER_KEYS_RENAME_DICT
        SPECIAL_KEYS_REMAP = TRANSFORMER_SPECIAL_KEYS_REMAP
    elif model_type == "Wan-T2V-14B":
        config = {
            "model_id": "StevenZhang/Wan2.1-T2V-14B-Diff",
            "diffusers_config": {
                "added_kv_proj_dim": None,
                "attention_head_dim": 128,
                "cross_attn_norm": True,
                "eps": 1e-06,
                "ffn_dim": 13824,
                "freq_dim": 256,
                "in_channels": 16,
                "num_attention_heads": 40,
                "num_layers": 40,
                "out_channels": 16,
                "patch_size": [1, 2, 2],
                "qk_norm": "rms_norm_across_heads",
                "text_dim": 4096,
            },
        }
        RENAME_DICT = TRANSFORMER_KEYS_RENAME_DICT
        SPECIAL_KEYS_REMAP = TRANSFORMER_SPECIAL_KEYS_REMAP
    elif model_type == "Wan-I2V-14B-480p":
        config = {
            "model_id": "StevenZhang/Wan2.1-I2V-14B-480P-Diff",
            "diffusers_config": {
                "image_dim": 1280,
                "added_kv_proj_dim": 5120,
                "attention_head_dim": 128,
                "cross_attn_norm": True,
                "eps": 1e-06,
                "ffn_dim": 13824,
                "freq_dim": 256,
                "in_channels": 36,
                "num_attention_heads": 40,
                "num_layers": 40,
                "out_channels": 16,
                "patch_size": [1, 2, 2],
                "qk_norm": "rms_norm_across_heads",
                "text_dim": 4096,
            },
        }
        RENAME_DICT = TRANSFORMER_KEYS_RENAME_DICT
        SPECIAL_KEYS_REMAP = TRANSFORMER_SPECIAL_KEYS_REMAP
    elif model_type == "Wan-I2V-14B-720p":
        config = {
            "model_id": "StevenZhang/Wan2.1-I2V-14B-720P-Diff",
            "diffusers_config": {
                "image_dim": 1280,
                "added_kv_proj_dim": 5120,
                "attention_head_dim": 128,
                "cross_attn_norm": True,
                "eps": 1e-06,
                "ffn_dim": 13824,
                "freq_dim": 256,
                "in_channels": 36,
                "num_attention_heads": 40,
                "num_layers": 40,
                "out_channels": 16,
                "patch_size": [1, 2, 2],
                "qk_norm": "rms_norm_across_heads",
                "text_dim": 4096,
            },
        }
        RENAME_DICT = TRANSFORMER_KEYS_RENAME_DICT
        SPECIAL_KEYS_REMAP = TRANSFORMER_SPECIAL_KEYS_REMAP
    elif model_type == "Wan-FLF2V-14B-720P":
        config = {
            "model_id": "ypyp/Wan2.1-FLF2V-14B-720P",  # This is just a placeholder
            "diffusers_config": {
                "image_dim": 1280,
                "added_kv_proj_dim": 5120,
                "attention_head_dim": 128,
                "cross_attn_norm": True,
                "eps": 1e-06,
                "ffn_dim": 13824,
                "freq_dim": 256,
                "in_channels": 36,
                "num_attention_heads": 40,
                "num_layers": 40,
                "out_channels": 16,
                "patch_size": [1, 2, 2],
                "qk_norm": "rms_norm_across_heads",
                "text_dim": 4096,
                "rope_max_seq_len": 1024,
                "pos_embed_seq_len": 257 * 2,
            },
        }
        RENAME_DICT = TRANSFORMER_KEYS_RENAME_DICT
        SPECIAL_KEYS_REMAP = TRANSFORMER_SPECIAL_KEYS_REMAP
    elif model_type == "Wan-VACE-1.3B":
        config = {
            "model_id": "Wan-AI/Wan2.1-VACE-1.3B",
            "diffusers_config": {
                "added_kv_proj_dim": None,
                "attention_head_dim": 128,
                "cross_attn_norm": True,
                "eps": 1e-06,
                "ffn_dim": 8960,
                "freq_dim": 256,
                "in_channels": 16,
                "num_attention_heads": 12,
                "num_layers": 30,
                "out_channels": 16,
                "patch_size": [1, 2, 2],
                "qk_norm": "rms_norm_across_heads",
                "text_dim": 4096,
                "vace_layers": [0, 2, 4, 6, 8, 10, 12, 14, 16, 18, 20, 22, 24, 26, 28],
                "vace_in_channels": 96,
            },
        }
        RENAME_DICT = VACE_TRANSFORMER_KEYS_RENAME_DICT
        SPECIAL_KEYS_REMAP = VACE_TRANSFORMER_SPECIAL_KEYS_REMAP
    elif model_type == "Wan-VACE-14B":
        config = {
            "model_id": "Wan-AI/Wan2.1-VACE-14B",
            "diffusers_config": {
                "added_kv_proj_dim": None,
                "attention_head_dim": 128,
                "cross_attn_norm": True,
                "eps": 1e-06,
                "ffn_dim": 13824,
                "freq_dim": 256,
                "in_channels": 16,
                "num_attention_heads": 40,
                "num_layers": 40,
                "out_channels": 16,
                "patch_size": [1, 2, 2],
                "qk_norm": "rms_norm_across_heads",
                "text_dim": 4096,
                "vace_layers": [0, 5, 10, 15, 20, 25, 30, 35],
                "vace_in_channels": 96,
            },
        }
        RENAME_DICT = VACE_TRANSFORMER_KEYS_RENAME_DICT
        SPECIAL_KEYS_REMAP = VACE_TRANSFORMER_SPECIAL_KEYS_REMAP
    return config, RENAME_DICT, SPECIAL_KEYS_REMAP


def convert_transformer(model_type: str):
    config, RENAME_DICT, SPECIAL_KEYS_REMAP = get_transformer_config(model_type)

    diffusers_config = config["diffusers_config"]
    model_id = config["model_id"]
    model_dir = pathlib.Path(snapshot_download(model_id, repo_type="model"))

    original_state_dict = load_sharded_safetensors(model_dir)

    with init_empty_weights():
        if "VACE" not in model_type:
            transformer = WanTransformer3DModel.from_config(diffusers_config)
        else:
            transformer = WanVACETransformer3DModel.from_config(diffusers_config)

    for key in list(original_state_dict.keys()):
        new_key = key[:]
        for replace_key, rename_key in RENAME_DICT.items():
            new_key = new_key.replace(replace_key, rename_key)
        update_state_dict_(original_state_dict, key, new_key)

    for key in list(original_state_dict.keys()):
        for special_key, handler_fn_inplace in SPECIAL_KEYS_REMAP.items():
            if special_key not in key:
                continue
            handler_fn_inplace(key, original_state_dict)

    transformer.load_state_dict(original_state_dict, strict=True, assign=True)
    return transformer


def convert_vae():
    vae_ckpt_path = hf_hub_download("Wan-AI/Wan2.1-T2V-14B", "Wan2.1_VAE.pth")
    old_state_dict = torch.load(vae_ckpt_path, weights_only=True)
    new_state_dict = {}

    # Create mappings for specific components
    middle_key_mapping = {
        # Encoder middle block
        "encoder.middle.0.residual.0.gamma": "encoder.mid_block.resnets.0.norm1.gamma",
        "encoder.middle.0.residual.2.bias": "encoder.mid_block.resnets.0.conv1.bias",
        "encoder.middle.0.residual.2.weight": "encoder.mid_block.resnets.0.conv1.weight",
        "encoder.middle.0.residual.3.gamma": "encoder.mid_block.resnets.0.norm2.gamma",
        "encoder.middle.0.residual.6.bias": "encoder.mid_block.resnets.0.conv2.bias",
        "encoder.middle.0.residual.6.weight": "encoder.mid_block.resnets.0.conv2.weight",
        "encoder.middle.2.residual.0.gamma": "encoder.mid_block.resnets.1.norm1.gamma",
        "encoder.middle.2.residual.2.bias": "encoder.mid_block.resnets.1.conv1.bias",
        "encoder.middle.2.residual.2.weight": "encoder.mid_block.resnets.1.conv1.weight",
        "encoder.middle.2.residual.3.gamma": "encoder.mid_block.resnets.1.norm2.gamma",
        "encoder.middle.2.residual.6.bias": "encoder.mid_block.resnets.1.conv2.bias",
        "encoder.middle.2.residual.6.weight": "encoder.mid_block.resnets.1.conv2.weight",
        # Decoder middle block
        "decoder.middle.0.residual.0.gamma": "decoder.mid_block.resnets.0.norm1.gamma",
        "decoder.middle.0.residual.2.bias": "decoder.mid_block.resnets.0.conv1.bias",
        "decoder.middle.0.residual.2.weight": "decoder.mid_block.resnets.0.conv1.weight",
        "decoder.middle.0.residual.3.gamma": "decoder.mid_block.resnets.0.norm2.gamma",
        "decoder.middle.0.residual.6.bias": "decoder.mid_block.resnets.0.conv2.bias",
        "decoder.middle.0.residual.6.weight": "decoder.mid_block.resnets.0.conv2.weight",
        "decoder.middle.2.residual.0.gamma": "decoder.mid_block.resnets.1.norm1.gamma",
        "decoder.middle.2.residual.2.bias": "decoder.mid_block.resnets.1.conv1.bias",
        "decoder.middle.2.residual.2.weight": "decoder.mid_block.resnets.1.conv1.weight",
        "decoder.middle.2.residual.3.gamma": "decoder.mid_block.resnets.1.norm2.gamma",
        "decoder.middle.2.residual.6.bias": "decoder.mid_block.resnets.1.conv2.bias",
        "decoder.middle.2.residual.6.weight": "decoder.mid_block.resnets.1.conv2.weight",
    }

    # Create a mapping for attention blocks
    attention_mapping = {
        # Encoder middle attention
        "encoder.middle.1.norm.gamma": "encoder.mid_block.attentions.0.norm.gamma",
        "encoder.middle.1.to_qkv.weight": "encoder.mid_block.attentions.0.to_qkv.weight",
        "encoder.middle.1.to_qkv.bias": "encoder.mid_block.attentions.0.to_qkv.bias",
        "encoder.middle.1.proj.weight": "encoder.mid_block.attentions.0.proj.weight",
        "encoder.middle.1.proj.bias": "encoder.mid_block.attentions.0.proj.bias",
        # Decoder middle attention
        "decoder.middle.1.norm.gamma": "decoder.mid_block.attentions.0.norm.gamma",
        "decoder.middle.1.to_qkv.weight": "decoder.mid_block.attentions.0.to_qkv.weight",
        "decoder.middle.1.to_qkv.bias": "decoder.mid_block.attentions.0.to_qkv.bias",
        "decoder.middle.1.proj.weight": "decoder.mid_block.attentions.0.proj.weight",
        "decoder.middle.1.proj.bias": "decoder.mid_block.attentions.0.proj.bias",
    }

    # Create a mapping for the head components
    head_mapping = {
        # Encoder head
        "encoder.head.0.gamma": "encoder.norm_out.gamma",
        "encoder.head.2.bias": "encoder.conv_out.bias",
        "encoder.head.2.weight": "encoder.conv_out.weight",
        # Decoder head
        "decoder.head.0.gamma": "decoder.norm_out.gamma",
        "decoder.head.2.bias": "decoder.conv_out.bias",
        "decoder.head.2.weight": "decoder.conv_out.weight",
    }

    # Create a mapping for the quant components
    quant_mapping = {
        "conv1.weight": "quant_conv.weight",
        "conv1.bias": "quant_conv.bias",
        "conv2.weight": "post_quant_conv.weight",
        "conv2.bias": "post_quant_conv.bias",
    }

    # Process each key in the state dict
    for key, value in old_state_dict.items():
        # Handle middle block keys using the mapping
        if key in middle_key_mapping:
            new_key = middle_key_mapping[key]
            new_state_dict[new_key] = value
        # Handle attention blocks using the mapping
        elif key in attention_mapping:
            new_key = attention_mapping[key]
            new_state_dict[new_key] = value
        # Handle head keys using the mapping
        elif key in head_mapping:
            new_key = head_mapping[key]
            new_state_dict[new_key] = value
        # Handle quant keys using the mapping
        elif key in quant_mapping:
            new_key = quant_mapping[key]
            new_state_dict[new_key] = value
        # Handle encoder conv1
        elif key == "encoder.conv1.weight":
            new_state_dict["encoder.conv_in.weight"] = value
        elif key == "encoder.conv1.bias":
            new_state_dict["encoder.conv_in.bias"] = value
        # Handle decoder conv1
        elif key == "decoder.conv1.weight":
            new_state_dict["decoder.conv_in.weight"] = value
        elif key == "decoder.conv1.bias":
            new_state_dict["decoder.conv_in.bias"] = value
        # Handle encoder downsamples
        elif key.startswith("encoder.downsamples."):
            # Convert to down_blocks
            new_key = key.replace("encoder.downsamples.", "encoder.down_blocks.")

            # Convert residual block naming but keep the original structure
            if ".residual.0.gamma" in new_key:
                new_key = new_key.replace(".residual.0.gamma", ".norm1.gamma")
            elif ".residual.2.bias" in new_key:
                new_key = new_key.replace(".residual.2.bias", ".conv1.bias")
            elif ".residual.2.weight" in new_key:
                new_key = new_key.replace(".residual.2.weight", ".conv1.weight")
            elif ".residual.3.gamma" in new_key:
                new_key = new_key.replace(".residual.3.gamma", ".norm2.gamma")
            elif ".residual.6.bias" in new_key:
                new_key = new_key.replace(".residual.6.bias", ".conv2.bias")
            elif ".residual.6.weight" in new_key:
                new_key = new_key.replace(".residual.6.weight", ".conv2.weight")
            elif ".shortcut.bias" in new_key:
                new_key = new_key.replace(".shortcut.bias", ".conv_shortcut.bias")
            elif ".shortcut.weight" in new_key:
                new_key = new_key.replace(".shortcut.weight", ".conv_shortcut.weight")

            new_state_dict[new_key] = value

        # Handle decoder upsamples
        elif key.startswith("decoder.upsamples."):
            # Convert to up_blocks
            parts = key.split(".")
            block_idx = int(parts[2])

            # Group residual blocks
            if "residual" in key:
                if block_idx in [0, 1, 2]:
                    new_block_idx = 0
                    resnet_idx = block_idx
                elif block_idx in [4, 5, 6]:
                    new_block_idx = 1
                    resnet_idx = block_idx - 4
                elif block_idx in [8, 9, 10]:
                    new_block_idx = 2
                    resnet_idx = block_idx - 8
                elif block_idx in [12, 13, 14]:
                    new_block_idx = 3
                    resnet_idx = block_idx - 12
                else:
                    # Keep as is for other blocks
                    new_state_dict[key] = value
                    continue

                # Convert residual block naming
                if ".residual.0.gamma" in key:
                    new_key = f"decoder.up_blocks.{new_block_idx}.resnets.{resnet_idx}.norm1.gamma"
                elif ".residual.2.bias" in key:
                    new_key = f"decoder.up_blocks.{new_block_idx}.resnets.{resnet_idx}.conv1.bias"
                elif ".residual.2.weight" in key:
                    new_key = f"decoder.up_blocks.{new_block_idx}.resnets.{resnet_idx}.conv1.weight"
                elif ".residual.3.gamma" in key:
                    new_key = f"decoder.up_blocks.{new_block_idx}.resnets.{resnet_idx}.norm2.gamma"
                elif ".residual.6.bias" in key:
                    new_key = f"decoder.up_blocks.{new_block_idx}.resnets.{resnet_idx}.conv2.bias"
                elif ".residual.6.weight" in key:
                    new_key = f"decoder.up_blocks.{new_block_idx}.resnets.{resnet_idx}.conv2.weight"
                else:
                    new_key = key

                new_state_dict[new_key] = value

            # Handle shortcut connections
            elif ".shortcut." in key:
                if block_idx == 4:
                    new_key = key.replace(".shortcut.", ".resnets.0.conv_shortcut.")
                    new_key = new_key.replace("decoder.upsamples.4", "decoder.up_blocks.1")
                else:
                    new_key = key.replace("decoder.upsamples.", "decoder.up_blocks.")
                    new_key = new_key.replace(".shortcut.", ".conv_shortcut.")

                new_state_dict[new_key] = value

            # Handle upsamplers
            elif ".resample." in key or ".time_conv." in key:
                if block_idx == 3:
                    new_key = key.replace(f"decoder.upsamples.{block_idx}", "decoder.up_blocks.0.upsamplers.0")
                elif block_idx == 7:
                    new_key = key.replace(f"decoder.upsamples.{block_idx}", "decoder.up_blocks.1.upsamplers.0")
                elif block_idx == 11:
                    new_key = key.replace(f"decoder.upsamples.{block_idx}", "decoder.up_blocks.2.upsamplers.0")
                else:
                    new_key = key.replace("decoder.upsamples.", "decoder.up_blocks.")

                new_state_dict[new_key] = value
            else:
                new_key = key.replace("decoder.upsamples.", "decoder.up_blocks.")
                new_state_dict[new_key] = value
        else:
            # Keep other keys unchanged
            new_state_dict[key] = value

    with init_empty_weights():
        vae = AutoencoderKLWan()
    vae.load_state_dict(new_state_dict, strict=True, assign=True)
    return vae


def get_args():
    parser = argparse.ArgumentParser()
    parser.add_argument("--model_type", type=str, default=None)
    parser.add_argument("--output_path", type=str, required=True)
    parser.add_argument("--dtype", default="fp32", choices=["fp32", "fp16", "bf16", "none"])
    return parser.parse_args()


DTYPE_MAPPING = {
    "fp32": torch.float32,
    "fp16": torch.float16,
    "bf16": torch.bfloat16,
}


if __name__ == "__main__":
    args = get_args()

    transformer = convert_transformer(args.model_type)
    vae = convert_vae()
    text_encoder = UMT5EncoderModel.from_pretrained("google/umt5-xxl", torch_dtype=torch.bfloat16)
    tokenizer = AutoTokenizer.from_pretrained("google/umt5-xxl")
    flow_shift = 16.0 if "FLF2V" in args.model_type else 3.0
    scheduler = UniPCMultistepScheduler(
        prediction_type="flow_prediction", use_flow_sigmas=True, num_train_timesteps=1000, flow_shift=flow_shift
    )

    # If user has specified "none", we keep the original dtypes of the state dict without any conversion
    if args.dtype != "none":
        dtype = DTYPE_MAPPING[args.dtype]
        transformer.to(dtype)

    if "I2V" in args.model_type or "FLF2V" in args.model_type:
        image_encoder = CLIPVisionModelWithProjection.from_pretrained(
            "laion/CLIP-ViT-H-14-laion2B-s32B-b79K", torch_dtype=torch.bfloat16
        )
        image_processor = AutoProcessor.from_pretrained("laion/CLIP-ViT-H-14-laion2B-s32B-b79K")
        pipe = WanImageToVideoPipeline(
            transformer=transformer,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            vae=vae,
            scheduler=scheduler,
            image_encoder=image_encoder,
            image_processor=image_processor,
        )
    elif "VACE" in args.model_type:
        pipe = WanVACEPipeline(
            transformer=transformer,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            vae=vae,
            scheduler=scheduler,
        )
    else:
        pipe = WanPipeline(
            transformer=transformer,
            text_encoder=text_encoder,
            tokenizer=tokenizer,
            vae=vae,
            scheduler=scheduler,
        )

    pipe.save_pretrained(args.output_path, safe_serialization=True, max_shard_size="5GB")