File size: 2,555 Bytes
			
			| 2cefcfb | 1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 | # Copyright (c) 2024 NVIDIA CORPORATION.
#   Licensed under the MIT license.
import torch
import torch.nn as nn
from alias_free_activation.torch.resample import UpSample1d, DownSample1d
# load fused CUDA kernel: this enables importing anti_alias_activation_cuda
from alias_free_activation.cuda import load
anti_alias_activation_cuda = load.load()
class FusedAntiAliasActivation(torch.autograd.Function):
    """
    Assumes filter size 12, replication padding on upsampling/downsampling, and logscale alpha/beta parameters as inputs.
    The hyperparameters are hard-coded in the kernel to maximize speed.
    NOTE: The fused kenrel is incorrect for Activation1d with different hyperparameters.
    """
    @staticmethod
    def forward(ctx, inputs, up_ftr, down_ftr, alpha, beta):
        activation_results = anti_alias_activation_cuda.forward(
            inputs, up_ftr, down_ftr, alpha, beta
        )
        return activation_results
    @staticmethod
    def backward(ctx, output_grads):
        raise NotImplementedError
        return output_grads, None, None
class Activation1d(nn.Module):
    def __init__(
        self,
        activation,
        up_ratio: int = 2,
        down_ratio: int = 2,
        up_kernel_size: int = 12,
        down_kernel_size: int = 12,
        fused: bool = True,
    ):
        super().__init__()
        self.up_ratio = up_ratio
        self.down_ratio = down_ratio
        self.act = activation
        self.upsample = UpSample1d(up_ratio, up_kernel_size)
        self.downsample = DownSample1d(down_ratio, down_kernel_size)
        self.fused = fused  # Whether to use fused CUDA kernel or not
    def forward(self, x):
        if not self.fused:
            x = self.upsample(x)
            x = self.act(x)
            x = self.downsample(x)
            return x
        else:
            if self.act.__class__.__name__ == "Snake":
                beta = self.act.alpha.data  # Snake uses same params for alpha and beta
            else:
                beta = (
                    self.act.beta.data
                )  # Snakebeta uses different params for alpha and beta
            alpha = self.act.alpha.data
            if (
                not self.act.alpha_logscale
            ):  # Exp baked into cuda kernel, cancel it out with a log
                alpha = torch.log(alpha)
                beta = torch.log(beta)
            x = FusedAntiAliasActivation.apply(
                x, self.upsample.filter, self.downsample.lowpass.filter, alpha, beta
            )
            return x
 | 
