Spaces:
Configuration error
Configuration error
Update app.py
Browse files
app.py
CHANGED
@@ -1,201 +1,48 @@
|
|
1 |
-
import
|
2 |
-
import spaces
|
3 |
-
from transformers import AutoModel, AutoTokenizer
|
4 |
from PIL import Image
|
5 |
-
import
|
6 |
-
|
7 |
-
|
8 |
-
|
9 |
-
|
10 |
-
|
11 |
-
|
12 |
-
|
13 |
-
|
14 |
-
|
15 |
-
|
16 |
-
|
17 |
-
|
18 |
-
|
19 |
-
|
20 |
-
|
21 |
-
|
22 |
-
|
23 |
-
|
24 |
-
|
25 |
-
|
26 |
-
|
27 |
-
|
28 |
-
|
29 |
-
return
|
30 |
-
|
31 |
-
|
32 |
-
def
|
33 |
-
|
34 |
-
image_path = os.path.join(UPLOAD_FOLDER, f"{unique_id}.png")
|
35 |
-
result_path = os.path.join(RESULTS_FOLDER, f"{unique_id}.html")
|
36 |
-
|
37 |
-
shutil.copy(image, image_path)
|
38 |
-
|
39 |
-
try:
|
40 |
-
if got_mode == "plain texts OCR":
|
41 |
-
res = model.chat(tokenizer, image_path, ocr_type='ocr')
|
42 |
-
return res, None
|
43 |
-
elif got_mode == "format texts OCR":
|
44 |
-
res = model.chat(tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path)
|
45 |
-
elif got_mode == "plain multi-crop OCR":
|
46 |
-
res = model.chat_crop(tokenizer, image_path, ocr_type='ocr')
|
47 |
-
return res, None
|
48 |
-
elif got_mode == "format multi-crop OCR":
|
49 |
-
res = model.chat_crop(tokenizer, image_path, ocr_type='format', render=True, save_render_file=result_path)
|
50 |
-
elif got_mode == "plain fine-grained OCR":
|
51 |
-
res = model.chat(tokenizer, image_path, ocr_type='ocr', ocr_box=ocr_box, ocr_color=ocr_color)
|
52 |
-
return res, None
|
53 |
-
elif got_mode == "format fine-grained OCR":
|
54 |
-
res = model.chat(tokenizer, image_path, ocr_type='format', ocr_box=ocr_box, ocr_color=ocr_color, render=True, save_render_file=result_path)
|
55 |
-
|
56 |
-
# res_markdown = f"$$ {res} $$"
|
57 |
-
res_markdown = res
|
58 |
-
|
59 |
-
if "format" in got_mode and os.path.exists(result_path):
|
60 |
-
with open(result_path, 'r') as f:
|
61 |
-
html_content = f.read()
|
62 |
-
encoded_html = base64.b64encode(html_content.encode('utf-8')).decode('utf-8')
|
63 |
-
iframe_src = f"data:text/html;base64,{encoded_html}"
|
64 |
-
iframe = f'<iframe src="{iframe_src}" width="100%" height="600px"></iframe>'
|
65 |
-
download_link = f'<a href="data:text/html;base64,{encoded_html}" download="result_{unique_id}.html">Download Full Result</a>'
|
66 |
-
return res_markdown, f"{download_link}<br>{iframe}"
|
67 |
-
else:
|
68 |
-
return res_markdown, None
|
69 |
-
except Exception as e:
|
70 |
-
return f"Error: {str(e)}", None
|
71 |
-
finally:
|
72 |
-
if os.path.exists(image_path):
|
73 |
-
os.remove(image_path)
|
74 |
-
|
75 |
-
def task_update(task):
|
76 |
-
if "fine-grained" in task:
|
77 |
-
return [
|
78 |
-
gr.update(visible=True),
|
79 |
-
gr.update(visible=False),
|
80 |
-
gr.update(visible=False),
|
81 |
-
]
|
82 |
-
else:
|
83 |
-
return [
|
84 |
-
gr.update(visible=False),
|
85 |
-
gr.update(visible=False),
|
86 |
-
gr.update(visible=False),
|
87 |
-
]
|
88 |
-
|
89 |
-
def fine_grained_update(task):
|
90 |
-
if task == "box":
|
91 |
-
return [
|
92 |
-
gr.update(visible=False, value = ""),
|
93 |
-
gr.update(visible=True),
|
94 |
-
]
|
95 |
-
elif task == 'color':
|
96 |
-
return [
|
97 |
-
gr.update(visible=True),
|
98 |
-
gr.update(visible=False, value = ""),
|
99 |
-
]
|
100 |
-
|
101 |
-
def cleanup_old_files():
|
102 |
-
current_time = time.time()
|
103 |
-
for folder in [UPLOAD_FOLDER, RESULTS_FOLDER]:
|
104 |
-
for file_path in Path(folder).glob('*'):
|
105 |
-
if current_time - file_path.stat().st_mtime > 3600: # 1 hour
|
106 |
-
file_path.unlink()
|
107 |
-
|
108 |
-
title_html = """
|
109 |
-
<h2> <span class="gradient-text" id="text">General OCR Theory</span><span class="plain-text">: Towards OCR-2.0 via a Unified End-to-end Model</span></h2>
|
110 |
-
<a href="https://huggingface.co/ucaslcl/GOT-OCR2_0">[😊 Hugging Face]</a>
|
111 |
-
<a href="https://arxiv.org/abs/2409.01704">[📜 Paper]</a>
|
112 |
-
<a href="https://github.com/Ucas-HaoranWei/GOT-OCR2.0/">[🌟 GitHub]</a>
|
113 |
-
"""
|
114 |
-
|
115 |
-
with gr.Blocks() as demo:
|
116 |
-
gr.HTML(title_html)
|
117 |
-
gr.Markdown("""
|
118 |
-
"🔥🔥🔥This is the official online demo of GOT-OCR-2.0 model!!!"
|
119 |
|
120 |
-
|
121 |
-
|
122 |
-
- **plain texts OCR & format texts OCR**: The two modes are for the image-level OCR.
|
123 |
-
- **plain multi-crop OCR & format multi-crop OCR**: For images with more complex content, you can achieve higher-quality results with these modes.
|
124 |
-
- **plain fine-grained OCR & format fine-grained OCR**: In these modes, you can specify fine-grained regions on the input image for more flexible OCR. Fine-grained regions can be coordinates of the box, red color, blue color, or green color.
|
125 |
-
""")
|
126 |
|
127 |
-
|
128 |
-
|
129 |
-
image_input = gr.Image(type="filepath", label="upload your image")
|
130 |
-
task_dropdown = gr.Dropdown(
|
131 |
-
choices=[
|
132 |
-
"plain texts OCR",
|
133 |
-
"format texts OCR",
|
134 |
-
"plain multi-crop OCR",
|
135 |
-
"format multi-crop OCR",
|
136 |
-
"plain fine-grained OCR",
|
137 |
-
"format fine-grained OCR",
|
138 |
-
],
|
139 |
-
label="Choose one mode of GOT",
|
140 |
-
value="plain texts OCR"
|
141 |
-
)
|
142 |
-
fine_grained_dropdown = gr.Dropdown(
|
143 |
-
choices=["box", "color"],
|
144 |
-
label="fine-grained type",
|
145 |
-
visible=False
|
146 |
-
)
|
147 |
-
color_dropdown = gr.Dropdown(
|
148 |
-
choices=["red", "green", "blue"],
|
149 |
-
label="color list",
|
150 |
-
visible=False
|
151 |
-
)
|
152 |
-
box_input = gr.Textbox(
|
153 |
-
label="input box: [x1,y1,x2,y2]",
|
154 |
-
placeholder="e.g., [0,0,100,100]",
|
155 |
-
visible=False
|
156 |
-
)
|
157 |
-
submit_button = gr.Button("Submit")
|
158 |
-
|
159 |
-
with gr.Column():
|
160 |
-
ocr_result = gr.Textbox(label="GOT output")
|
161 |
-
|
162 |
-
with gr.Column():
|
163 |
-
gr.Markdown("**If you choose the mode with format, the mathpix result will be automatically rendered as follows:**")
|
164 |
-
html_result = gr.HTML(label="rendered html", show_label=True)
|
165 |
-
|
166 |
-
gr.Examples(
|
167 |
-
examples=[
|
168 |
-
["assets/coco.jpg", "plain texts OCR", "", "", ""],
|
169 |
-
["assets/en_30.png", "plain texts OCR", "", "", ""],
|
170 |
-
["assets/eq.jpg", "format texts OCR", "", "", ""],
|
171 |
-
["assets/table.jpg", "format texts OCR", "", "", ""],
|
172 |
-
["assets/giga.jpg", "format multi-crop OCR", "", "", ""],
|
173 |
-
["assets/aff2.png", "plain fine-grained OCR", "box", "", "[409,763,756,891]"],
|
174 |
-
["assets/color.png", "plain fine-grained OCR", "color", "red", ""],
|
175 |
-
],
|
176 |
-
inputs=[image_input, task_dropdown, fine_grained_dropdown, color_dropdown, box_input],
|
177 |
-
outputs=[ocr_result, html_result],
|
178 |
-
fn=run_GOT,
|
179 |
-
label="examples",
|
180 |
-
)
|
181 |
-
|
182 |
-
task_dropdown.change(
|
183 |
-
task_update,
|
184 |
-
inputs=[task_dropdown],
|
185 |
-
outputs=[fine_grained_dropdown, color_dropdown, box_input]
|
186 |
-
)
|
187 |
-
fine_grained_dropdown.change(
|
188 |
-
fine_grained_update,
|
189 |
-
inputs=[fine_grained_dropdown],
|
190 |
-
outputs=[color_dropdown, box_input]
|
191 |
-
)
|
192 |
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
|
|
|
1 |
+
from transformers import AutoTokenizer, AutoModel
|
|
|
|
|
2 |
from PIL import Image
|
3 |
+
import torch
|
4 |
+
|
5 |
+
# Charger le modèle GOT-OCR2_0 pour la reconnaissance des plaques d'immatriculation
|
6 |
+
ocr_tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
|
7 |
+
ocr_model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True)
|
8 |
+
ocr_model.eval().cuda()
|
9 |
+
|
10 |
+
# Charger le modèle de suivi et reconnaissance de couleur des véhicules
|
11 |
+
vehicle_model = torch.hub.load('ultralytics/yolov5', 'custom', path='sujithvamshi/Real-Time-Vehicle-Tracking-And-Colour-Recognition/best.pt')
|
12 |
+
|
13 |
+
# Fonction pour extraire la plaque d'immatriculation avec OCR
|
14 |
+
def get_license_plate(image):
|
15 |
+
# Utiliser le modèle GOT-OCR pour extraire le texte (plaque d'immatriculation)
|
16 |
+
image_tensor = ocr_tokenizer(image, return_tensors="pt").input_ids
|
17 |
+
with torch.no_grad():
|
18 |
+
output = ocr_model(image_tensor)
|
19 |
+
plate_text = ocr_tokenizer.decode(output.logits[0], skip_special_tokens=True)
|
20 |
+
return plate_text
|
21 |
+
|
22 |
+
# Fonction pour extraire la couleur du véhicule
|
23 |
+
def get_vehicle_color(image):
|
24 |
+
# Utiliser le modèle Real-Time-Vehicle-Tracking-And-Colour-Recognition pour obtenir la couleur
|
25 |
+
results = vehicle_model(image)
|
26 |
+
color_info = results.pandas().xyxy[0].color # Hypothèse: le modèle retourne une info de couleur
|
27 |
+
return color_info
|
28 |
+
|
29 |
+
# Fusionner les deux résultats
|
30 |
+
def process_image(image_path):
|
31 |
+
image = Image.open(image_path)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
32 |
|
33 |
+
# 1. Extraire la plaque d'immatriculation
|
34 |
+
license_plate = get_license_plate(image)
|
|
|
|
|
|
|
|
|
35 |
|
36 |
+
# 2. Extraire la couleur du véhicule
|
37 |
+
vehicle_color = get_vehicle_color(image)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
38 |
|
39 |
+
# 3. Retourner la fusion des résultats
|
40 |
+
return {
|
41 |
+
"license_plate": license_plate,
|
42 |
+
"vehicle_color": vehicle_color
|
43 |
+
}
|
44 |
+
|
45 |
+
# Exemple d'utilisation
|
46 |
+
image_path = "path_to_your_image.jpg"
|
47 |
+
result = process_image(image_path)
|
48 |
+
print(f"Plaque d'immatriculation: {result['license_plate']}, Couleur du véhicule: {result['vehicle_color']}")
|