Spaces:
Configuration error
Configuration error
Update app.py (#6)
Browse files- Update app.py (0458920d994b4ae10b036d171b9e880ec17f47e3)
Co-authored-by: Ben <[email protected]>
app.py
CHANGED
@@ -1,77 +1,30 @@
|
|
1 |
-
import
|
2 |
|
3 |
-
|
4 |
-
|
|
|
5 |
|
6 |
-
# En-têtes de la requête
|
7 |
-
headers = {
|
8 |
-
'Content-Type': 'application/json',
|
9 |
-
}
|
10 |
|
11 |
-
#
|
12 |
-
|
13 |
-
"contents": [
|
14 |
-
{
|
15 |
-
"parts": [
|
16 |
-
{"text": "Explain how AI works"}
|
17 |
-
]
|
18 |
-
}
|
19 |
-
]
|
20 |
-
}
|
21 |
|
22 |
-
#
|
23 |
-
|
24 |
|
25 |
-
#
|
26 |
-
|
27 |
|
|
|
|
|
|
|
|
|
|
|
28 |
|
|
|
|
|
|
|
29 |
|
30 |
-
|
31 |
-
|
32 |
-
import torch
|
33 |
|
34 |
-
|
35 |
-
ocr_tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
|
36 |
-
ocr_model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True)
|
37 |
-
ocr_model.eval().cuda()
|
38 |
-
|
39 |
-
# Charger le modèle de suivi et reconnaissance de couleur des véhicules
|
40 |
-
vehicle_model = torch.hub.load('ultralytics/yolov5', 'custom', path='sujithvamshi/Real-Time-Vehicle-Tracking-And-Colour-Recognition/best.pt')
|
41 |
-
|
42 |
-
# Fonction pour extraire la plaque d'immatriculation avec OCR
|
43 |
-
def get_license_plate(image):
|
44 |
-
# Utiliser le modèle GOT-OCR pour extraire le texte (plaque d'immatriculation)
|
45 |
-
image_tensor = ocr_tokenizer(image, return_tensors="pt").input_ids
|
46 |
-
with torch.no_grad():
|
47 |
-
output = ocr_model(image_tensor)
|
48 |
-
plate_text = ocr_tokenizer.decode(output.logits[0], skip_special_tokens=True)
|
49 |
-
return plate_text
|
50 |
-
|
51 |
-
# Fonction pour extraire la couleur du véhicule
|
52 |
-
def get_vehicle_color(image):
|
53 |
-
# Utiliser le modèle Real-Time-Vehicle-Tracking-And-Colour-Recognition pour obtenir la couleur
|
54 |
-
results = vehicle_model(image)
|
55 |
-
color_info = results.pandas().xyxy[0].color # Hypothèse: le modèle retourne une info de couleur
|
56 |
-
return color_info
|
57 |
-
|
58 |
-
# Fusionner les deux résultats
|
59 |
-
def process_image(image_path):
|
60 |
-
image = Image.open(image_path)
|
61 |
-
|
62 |
-
# 1. Extraire la plaque d'immatriculation
|
63 |
-
license_plate = get_license_plate(image)
|
64 |
-
|
65 |
-
# 2. Extraire la couleur du véhicule
|
66 |
-
vehicle_color = get_vehicle_color(image)
|
67 |
-
|
68 |
-
# 3. Retourner la fusion des résultats
|
69 |
-
return {
|
70 |
-
"license_plate": license_plate,
|
71 |
-
"vehicle_color": vehicle_color
|
72 |
-
}
|
73 |
-
|
74 |
-
# Exemple d'utilisation
|
75 |
-
image_path = "path_to_your_image.jpg"
|
76 |
-
result = process_image(image_path)
|
77 |
-
print(f"Plaque d'immatriculation: {result['license_plate']}, Couleur du véhicule: {result['vehicle_color']}")
|
|
|
1 |
+
from transformers import AutoModel, AutoTokenizer
|
2 |
|
3 |
+
tokenizer = AutoTokenizer.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True)
|
4 |
+
model = AutoModel.from_pretrained('ucaslcl/GOT-OCR2_0', trust_remote_code=True, low_cpu_mem_usage=True, device_map='cuda', use_safetensors=True, pad_token_id=tokenizer.eos_token_id)
|
5 |
+
model = model.eval().cuda()
|
6 |
|
|
|
|
|
|
|
|
|
7 |
|
8 |
+
# input your test image
|
9 |
+
image_file = 'car.jpg'
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
10 |
|
11 |
+
# plain texts OCR
|
12 |
+
res = model.chat(tokenizer, image_file, ocr_type='ocr')
|
13 |
|
14 |
+
# format texts OCR:
|
15 |
+
# res = model.chat(tokenizer, image_file, ocr_type='format')
|
16 |
|
17 |
+
# fine-grained OCR:
|
18 |
+
# res = model.chat(tokenizer, image_file, ocr_type='ocr', ocr_box='')
|
19 |
+
# res = model.chat(tokenizer, image_file, ocr_type='format', ocr_box='')
|
20 |
+
# res = model.chat(tokenizer, image_file, ocr_type='ocr', ocr_color='')
|
21 |
+
# res = model.chat(tokenizer, image_file, ocr_type='format', ocr_color='')
|
22 |
|
23 |
+
# multi-crop OCR:
|
24 |
+
# res = model.chat_crop(tokenizer, image_file, ocr_type='ocr')
|
25 |
+
# res = model.chat_crop(tokenizer, image_file, ocr_type='format')
|
26 |
|
27 |
+
# render the formatted OCR results:
|
28 |
+
# res = model.chat(tokenizer, image_file, ocr_type='format', render=True, save_render_file = './demo.html')
|
|
|
29 |
|
30 |
+
print(res)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|