File size: 5,819 Bytes
728b5a0
 
 
 
350baf2
728b5a0
 
350baf2
728b5a0
 
350baf2
728b5a0
 
 
 
 
350baf2
 
 
 
 
 
 
728b5a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
350baf2
728b5a0
 
 
350baf2
728b5a0
 
 
350baf2
 
 
 
 
 
728b5a0
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
350baf2
728b5a0
 
 
 
 
 
 
 
 
 
 
 
 
 
350baf2
728b5a0
 
 
 
 
350baf2
728b5a0
 
 
 
 
350baf2
728b5a0
350baf2
728b5a0
350baf2
728b5a0
 
 
 
350baf2
728b5a0
 
350baf2
728b5a0
350baf2
728b5a0
350baf2
728b5a0
 
 
 
350baf2
 
 
728b5a0
 
350baf2
 
 
728b5a0
 
 
 
350baf2
 
728b5a0
 
 
350baf2
 
728b5a0
 
 
 
 
 
350baf2
728b5a0
350baf2
728b5a0
 
 
 
 
350baf2
 
728b5a0
 
 
 
350baf2
728b5a0
350baf2
 
 
 
 
 
 
 
 
 
728b5a0
 
 
350baf2
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
import gradio as gr
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import Chroma
from langchain.prompts import PromptTemplate
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
import warnings
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
import os
from dotenv import load_dotenv
from langchain_huggingface import HuggingFacePipeline

warnings.filterwarnings("ignore")
load_dotenv()

# Constants and configurations
TITLE = "πŸ’Š Asisten Kesehatan Feminacare"
DESCRIPTION = """
# πŸ’Š Asisten Kesehatan Feminacare
Asisten digital ini dirancang untuk membantu Anda berkonsultasi tentang kesehatan wanita.

*Catatan: Informasi yang diberikan bersifat umum. Selalu konsultasikan dengan tenaga kesehatan untuk saran yang lebih spesifik.*
"""

MODEL_NAME = "SeaLLMs/SeaLLMs-v3-7B-Chat"
EMBEDDING_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
TOP_K_DOCS = 5

def initialize_models():
    """Initialize the embedding model and vector store"""
    data_directory = os.path.join(os.path.dirname(__file__), "vector_db_dir")
    embedding_model = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL)
    vector_store = Chroma(
        embedding_function=embedding_model, 
        persist_directory=data_directory
    )
    return vector_store

def create_llm():
    """Initialize the language model with auto device mapping"""
    model = AutoModelForCausalLM.from_pretrained(
        MODEL_NAME,
        device_map="auto",
        trust_remote_code=True
    )
    tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
    
    terminators = [tokenizer.eos_token_id]
    if hasattr(tokenizer, 'convert_tokens_to_ids'):
        try:
            terminators.append(tokenizer.convert_tokens_to_ids("<|eot_id|>"))
        except:
            pass
    
    text_generation_pipeline = pipeline(
        model=model,
        tokenizer=tokenizer,
        task="text-generation",
        temperature=0.2,
        do_sample=True,
        repetition_penalty=1.1,
        return_full_text=False,
        max_new_tokens=200,
        eos_token_id=terminators,
    )
    
    return HuggingFacePipeline(pipeline=text_generation_pipeline)

PROMPT_TEMPLATE = """
Anda adalah asisten kesehatan profesional dengan nama Feminacare. 
Berikan informasi yang akurat, jelas, dan bermanfaat berdasarkan konteks yang tersedia.
Context yang tersedia:
{context}
Chat historyt:
{chat_history}
Question: {question}
Instruksi untuk menjawab:
1. Berikan jawaban yang LENGKAP dan TERSTRUKTUR
2. Selalu sertakan SUMBER informasi dari konteks yang diberikan
3. Jika informasi tidak tersedia dalam konteks, katakan: "Maaf, saya tidak memiliki informasi yang cukup untuk menjawab pertanyaan tersebut secara akurat. Silakan konsultasi dengan tenaga kesehatan untuk informasi lebih lanjut."
4. Gunakan bahasa yang mudah dipahami
5. Jika relevan, berikan poin-poin penting menggunakan format yang rapi
6. Akhiri dengan anjuran untuk konsultasi dengan tenaga kesehatan jika diperlukan
Answer:
"""

class HealthAssistant:
    def __init__(self):
        vector_store = initialize_models()
        self.memory = ConversationBufferMemory(
            memory_key="chat_history",
            return_messages=True,
            output_key='answer'
        )
        
        custom_prompt = PromptTemplate(
            template=PROMPT_TEMPLATE,
            input_variables=["context", "question", "chat_history"]
        )
        
        self.qa_chain = ConversationalRetrievalChain.from_llm(
            llm=create_llm(),
            retriever=vector_store.as_retriever(),
            memory=self.memory,
            combine_docs_chain_kwargs={"prompt": custom_prompt},
            return_source_documents=True,
        )

    def respond(self, message, history):
        """Process the message and return a response"""
        response = self.qa_chain({"question": message})
        return response["answer"]
    
    def clear_history(self):
        """Clear the conversation memory"""
        self.memory.clear()
        return None

def create_demo():
    assistant = HealthAssistant()
    
    # Define the interface
    with gr.Blocks(title=TITLE) as demo:
        gr.Markdown(DESCRIPTION)
        
        chatbot = gr.Chatbot(
            label="Chat History",
            height=600,
            show_copy_button=True,
        )
        
        with gr.Row():
            msg = gr.Textbox(
                label="Ketik pertanyaan Anda di sini...",
                placeholder="Contoh: Apa itu PCOS?",
                scale=9
            )
            submit = gr.Button("Kirim", scale=1)
            
        clear = gr.Button("πŸ—‘οΈ Hapus Riwayat Chat")
        
        # Set up event handlers
        submit_click = submit.click(
            assistant.respond,
            inputs=[msg, chatbot],
            outputs=[chatbot],
            show_progress="full"
        )
        submit_click.then(lambda: "", None, msg)  # Clear input after sending
        
        msg.submit(
            assistant.respond,
            inputs=[msg, chatbot],
            outputs=[chatbot],
            show_progress="full"
        ).then(lambda: "", None, msg)  # Clear input after sending
        
        clear.click(
            assistant.clear_history,
            outputs=[chatbot],
            show_progress=True
        )
        
        # Add some CSS styling
        gr.Markdown("""
        <style>
        .gradio-container {
            max-width: 1200px !important;
            margin: auto;
        }
        </style>
        """)
    
    return demo

if __name__ == "__main__":
    demo = create_demo()
    demo.launch(
        share=True,
        server_name="0.0.0.0",
        server_port=7860,
        enable_queue=True
    )