Spaces:
Runtime error
Runtime error
File size: 5,819 Bytes
728b5a0 350baf2 728b5a0 350baf2 728b5a0 350baf2 728b5a0 350baf2 728b5a0 350baf2 728b5a0 350baf2 728b5a0 350baf2 728b5a0 350baf2 728b5a0 350baf2 728b5a0 350baf2 728b5a0 350baf2 728b5a0 350baf2 728b5a0 350baf2 728b5a0 350baf2 728b5a0 350baf2 728b5a0 350baf2 728b5a0 350baf2 728b5a0 350baf2 728b5a0 350baf2 728b5a0 350baf2 728b5a0 350baf2 728b5a0 350baf2 728b5a0 350baf2 728b5a0 350baf2 728b5a0 350baf2 728b5a0 350baf2 728b5a0 350baf2 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 |
import gradio as gr
from langchain_huggingface import HuggingFaceEmbeddings
from langchain_community.vectorstores import Chroma
from langchain.prompts import PromptTemplate
from langchain.chains import ConversationalRetrievalChain
from langchain.memory import ConversationBufferMemory
import warnings
from transformers import pipeline, AutoTokenizer, AutoModelForCausalLM
import os
from dotenv import load_dotenv
from langchain_huggingface import HuggingFacePipeline
warnings.filterwarnings("ignore")
load_dotenv()
# Constants and configurations
TITLE = "π Asisten Kesehatan Feminacare"
DESCRIPTION = """
# π Asisten Kesehatan Feminacare
Asisten digital ini dirancang untuk membantu Anda berkonsultasi tentang kesehatan wanita.
*Catatan: Informasi yang diberikan bersifat umum. Selalu konsultasikan dengan tenaga kesehatan untuk saran yang lebih spesifik.*
"""
MODEL_NAME = "SeaLLMs/SeaLLMs-v3-7B-Chat"
EMBEDDING_MODEL = "sentence-transformers/all-MiniLM-L6-v2"
TOP_K_DOCS = 5
def initialize_models():
"""Initialize the embedding model and vector store"""
data_directory = os.path.join(os.path.dirname(__file__), "vector_db_dir")
embedding_model = HuggingFaceEmbeddings(model_name=EMBEDDING_MODEL)
vector_store = Chroma(
embedding_function=embedding_model,
persist_directory=data_directory
)
return vector_store
def create_llm():
"""Initialize the language model with auto device mapping"""
model = AutoModelForCausalLM.from_pretrained(
MODEL_NAME,
device_map="auto",
trust_remote_code=True
)
tokenizer = AutoTokenizer.from_pretrained(MODEL_NAME)
terminators = [tokenizer.eos_token_id]
if hasattr(tokenizer, 'convert_tokens_to_ids'):
try:
terminators.append(tokenizer.convert_tokens_to_ids("<|eot_id|>"))
except:
pass
text_generation_pipeline = pipeline(
model=model,
tokenizer=tokenizer,
task="text-generation",
temperature=0.2,
do_sample=True,
repetition_penalty=1.1,
return_full_text=False,
max_new_tokens=200,
eos_token_id=terminators,
)
return HuggingFacePipeline(pipeline=text_generation_pipeline)
PROMPT_TEMPLATE = """
Anda adalah asisten kesehatan profesional dengan nama Feminacare.
Berikan informasi yang akurat, jelas, dan bermanfaat berdasarkan konteks yang tersedia.
Context yang tersedia:
{context}
Chat historyt:
{chat_history}
Question: {question}
Instruksi untuk menjawab:
1. Berikan jawaban yang LENGKAP dan TERSTRUKTUR
2. Selalu sertakan SUMBER informasi dari konteks yang diberikan
3. Jika informasi tidak tersedia dalam konteks, katakan: "Maaf, saya tidak memiliki informasi yang cukup untuk menjawab pertanyaan tersebut secara akurat. Silakan konsultasi dengan tenaga kesehatan untuk informasi lebih lanjut."
4. Gunakan bahasa yang mudah dipahami
5. Jika relevan, berikan poin-poin penting menggunakan format yang rapi
6. Akhiri dengan anjuran untuk konsultasi dengan tenaga kesehatan jika diperlukan
Answer:
"""
class HealthAssistant:
def __init__(self):
vector_store = initialize_models()
self.memory = ConversationBufferMemory(
memory_key="chat_history",
return_messages=True,
output_key='answer'
)
custom_prompt = PromptTemplate(
template=PROMPT_TEMPLATE,
input_variables=["context", "question", "chat_history"]
)
self.qa_chain = ConversationalRetrievalChain.from_llm(
llm=create_llm(),
retriever=vector_store.as_retriever(),
memory=self.memory,
combine_docs_chain_kwargs={"prompt": custom_prompt},
return_source_documents=True,
)
def respond(self, message, history):
"""Process the message and return a response"""
response = self.qa_chain({"question": message})
return response["answer"]
def clear_history(self):
"""Clear the conversation memory"""
self.memory.clear()
return None
def create_demo():
assistant = HealthAssistant()
# Define the interface
with gr.Blocks(title=TITLE) as demo:
gr.Markdown(DESCRIPTION)
chatbot = gr.Chatbot(
label="Chat History",
height=600,
show_copy_button=True,
)
with gr.Row():
msg = gr.Textbox(
label="Ketik pertanyaan Anda di sini...",
placeholder="Contoh: Apa itu PCOS?",
scale=9
)
submit = gr.Button("Kirim", scale=1)
clear = gr.Button("ποΈ Hapus Riwayat Chat")
# Set up event handlers
submit_click = submit.click(
assistant.respond,
inputs=[msg, chatbot],
outputs=[chatbot],
show_progress="full"
)
submit_click.then(lambda: "", None, msg) # Clear input after sending
msg.submit(
assistant.respond,
inputs=[msg, chatbot],
outputs=[chatbot],
show_progress="full"
).then(lambda: "", None, msg) # Clear input after sending
clear.click(
assistant.clear_history,
outputs=[chatbot],
show_progress=True
)
# Add some CSS styling
gr.Markdown("""
<style>
.gradio-container {
max-width: 1200px !important;
margin: auto;
}
</style>
""")
return demo
if __name__ == "__main__":
demo = create_demo()
demo.launch(
share=True,
server_name="0.0.0.0",
server_port=7860,
enable_queue=True
) |