Spaces:
Running
Running
update sampled
Browse files- app.py +5 -5
- metrics.py +89 -4
app.py
CHANGED
@@ -21,13 +21,13 @@ Note that not every model has a response for every puzzle.
|
|
21 |
import gradio as gr
|
22 |
import pandas as pd
|
23 |
import numpy as np
|
24 |
-
from metrics import
|
25 |
import metrics
|
26 |
from pathlib import Path
|
27 |
|
28 |
def get_model_response(prompt_id, model_name):
|
29 |
query = f"""
|
30 |
-
SELECT completion FROM
|
31 |
WHERE prompt_id = {prompt_id} AND parent_dir = '{model_name}'
|
32 |
"""
|
33 |
response = conn.sql(query).fetchone()
|
@@ -56,10 +56,10 @@ def display_model_response(puzzle_id, model_name, show_thoughts):
|
|
56 |
return response.strip()
|
57 |
|
58 |
|
59 |
-
conn =
|
60 |
|
61 |
# Get all unique model names
|
62 |
-
model_names = [item[0] for item in conn.sql("SELECT DISTINCT parent_dir FROM
|
63 |
model_names.sort()
|
64 |
# Just for display.
|
65 |
cleaned_model_names = [name.replace("completions-", "") for name in model_names]
|
@@ -84,7 +84,7 @@ def build_table():
|
|
84 |
query += """
|
85 |
clip_text(c.challenge, 40) as challenge_clipped,
|
86 |
FROM challenges c
|
87 |
-
LEFT JOIN
|
88 |
ON c.ID = r.prompt_id
|
89 |
GROUP BY c.ID, c.challenge, c.answer
|
90 |
"""
|
|
|
21 |
import gradio as gr
|
22 |
import pandas as pd
|
23 |
import numpy as np
|
24 |
+
from metrics import load_results_sample_one_only, accuracy_by_model_and_time
|
25 |
import metrics
|
26 |
from pathlib import Path
|
27 |
|
28 |
def get_model_response(prompt_id, model_name):
|
29 |
query = f"""
|
30 |
+
SELECT completion FROM sampled
|
31 |
WHERE prompt_id = {prompt_id} AND parent_dir = '{model_name}'
|
32 |
"""
|
33 |
response = conn.sql(query).fetchone()
|
|
|
56 |
return response.strip()
|
57 |
|
58 |
|
59 |
+
conn = load_results_sample_one_only()
|
60 |
|
61 |
# Get all unique model names
|
62 |
+
model_names = [item[0] for item in conn.sql("SELECT DISTINCT parent_dir FROM sampled").fetchall()]
|
63 |
model_names.sort()
|
64 |
# Just for display.
|
65 |
cleaned_model_names = [name.replace("completions-", "") for name in model_names]
|
|
|
84 |
query += """
|
85 |
clip_text(c.challenge, 40) as challenge_clipped,
|
86 |
FROM challenges c
|
87 |
+
LEFT JOIN sampled r
|
88 |
ON c.ID = r.prompt_id
|
89 |
GROUP BY c.ID, c.challenge, c.answer
|
90 |
"""
|
metrics.py
CHANGED
@@ -3,6 +3,18 @@ import duckdb
|
|
3 |
import textwrap
|
4 |
from typing import List, Tuple
|
5 |
import argparse
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
6 |
|
7 |
def _parse_answer(text: str) -> List[List[str]]:
|
8 |
"""
|
@@ -17,7 +29,7 @@ def _parse_answer(text: str) -> List[List[str]]:
|
|
17 |
distinct phrases that may be present in any order. All other characters
|
18 |
are dropped.
|
19 |
"""
|
20 |
-
text = text
|
21 |
alternatives = re.split(r';', text)
|
22 |
result = [ ]
|
23 |
for alternative in alternatives:
|
@@ -43,6 +55,7 @@ def _check_answer(completion: str, answer: str) -> bool:
|
|
43 |
completion = _answer_without_thoughts(completion).lower()
|
44 |
completion = re.sub(r'[^\w\s]', ' ', completion) # this replaces punctuations with space, aligning with the _parse_answer function's ' '.join
|
45 |
completion = re.sub(r'\s+', ' ', completion) # normalize consecutive (Unicode) spaces to finish aligning with _parse_answer
|
|
|
46 |
alternative_answers = _parse_answer(answer)
|
47 |
for answer_phrases in alternative_answers:
|
48 |
# if all(phrase in completion for phrase in answer_phrases):
|
@@ -71,6 +84,37 @@ def load_results():
|
|
71 |
conn.create_function("wrap_text", _wrap_text)
|
72 |
return conn
|
73 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
74 |
def r1_accuracy_by_completion_length(conn,model_name):
|
75 |
"""
|
76 |
For the responses from the completions-r1 model:
|
@@ -154,8 +198,8 @@ def accuracy_by_model(conn):
|
|
154 |
WITH AnswerCheck AS (
|
155 |
SELECT
|
156 |
results.parent_dir AS model,
|
157 |
-
|
158 |
-
SUM(CAST(check_answer(results.completion, challenges.answer) AS INTEGER)) AS correct
|
159 |
FROM
|
160 |
results.completions results
|
161 |
JOIN
|
@@ -174,11 +218,52 @@ def accuracy_by_model(conn):
|
|
174 |
AnswerCheck
|
175 |
""")
|
176 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
177 |
def main():
|
178 |
parser = argparse.ArgumentParser()
|
179 |
parser.add_argument("--by-model-and-time", action="store_true")
|
180 |
args = parser.parse_args()
|
181 |
-
conn =
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
182 |
if args.by_model_and_time:
|
183 |
print(accuracy_by_model_and_time(conn))
|
184 |
else:
|
|
|
3 |
import textwrap
|
4 |
from typing import List, Tuple
|
5 |
import argparse
|
6 |
+
import unicodedata
|
7 |
+
|
8 |
+
import unicodedata
|
9 |
+
import re
|
10 |
+
|
11 |
+
def normalize_text(text: str) -> str:
|
12 |
+
"""Normalize text to remove accents, convert to lowercase, and strip spaces."""
|
13 |
+
text = unicodedata.normalize("NFKD", text) # Decomposes letters with accents (e.g., é → e + ́)
|
14 |
+
text = "".join([c for c in text if not unicodedata.combining(c)]) # Remove diacritics
|
15 |
+
text = text.lower().strip() # Convert to lowercase and strip spaces
|
16 |
+
return text
|
17 |
+
|
18 |
|
19 |
def _parse_answer(text: str) -> List[List[str]]:
|
20 |
"""
|
|
|
29 |
distinct phrases that may be present in any order. All other characters
|
30 |
are dropped.
|
31 |
"""
|
32 |
+
text = normalize_text(text)
|
33 |
alternatives = re.split(r';', text)
|
34 |
result = [ ]
|
35 |
for alternative in alternatives:
|
|
|
55 |
completion = _answer_without_thoughts(completion).lower()
|
56 |
completion = re.sub(r'[^\w\s]', ' ', completion) # this replaces punctuations with space, aligning with the _parse_answer function's ' '.join
|
57 |
completion = re.sub(r'\s+', ' ', completion) # normalize consecutive (Unicode) spaces to finish aligning with _parse_answer
|
58 |
+
completion = normalize_text(completion)
|
59 |
alternative_answers = _parse_answer(answer)
|
60 |
for answer_phrases in alternative_answers:
|
61 |
# if all(phrase in completion for phrase in answer_phrases):
|
|
|
84 |
conn.create_function("wrap_text", _wrap_text)
|
85 |
return conn
|
86 |
|
87 |
+
def load_results_sample_one_only():
|
88 |
+
conn = duckdb.connect(":memory:")
|
89 |
+
conn.execute("ATTACH DATABASE 'results.duckdb' AS results (READ_ONLY)")
|
90 |
+
|
91 |
+
query = """
|
92 |
+
CREATE TABLE sampled AS
|
93 |
+
WITH numbered AS (
|
94 |
+
SELECT *,
|
95 |
+
ROW_NUMBER() OVER (PARTITION BY parent_dir, prompt ORDER BY prompt_id) AS rn
|
96 |
+
FROM results.completions
|
97 |
+
)
|
98 |
+
SELECT prompt_id, parent_dir, prompt, completion
|
99 |
+
FROM numbered
|
100 |
+
WHERE rn = 1;
|
101 |
+
"""
|
102 |
+
conn.execute(query).fetchall()
|
103 |
+
# #print how how many rows are in the table
|
104 |
+
# print(conn.execute("SELECT COUNT(*) FROM sampled").fetchall())
|
105 |
+
# #describe the sampled table
|
106 |
+
# print(conn.execute("DESCRIBE sampled").fetchall())
|
107 |
+
|
108 |
+
conn.execute("""
|
109 |
+
CREATE TABLE challenges AS
|
110 |
+
SELECT * FROM 'puzzles_cleaned.csv'
|
111 |
+
WHERE Warnings IS NULL OR Warnings NOT LIKE '%(E)%'
|
112 |
+
""")
|
113 |
+
conn.create_function("check_answer", _check_answer)
|
114 |
+
conn.create_function("clip_text", _clip_text)
|
115 |
+
conn.create_function("wrap_text", _wrap_text)
|
116 |
+
return conn
|
117 |
+
|
118 |
def r1_accuracy_by_completion_length(conn,model_name):
|
119 |
"""
|
120 |
For the responses from the completions-r1 model:
|
|
|
198 |
WITH AnswerCheck AS (
|
199 |
SELECT
|
200 |
results.parent_dir AS model,
|
201 |
+
SUM(results.count) AS total,
|
202 |
+
SUM(results.count * CAST(check_answer(results.completion, challenges.answer) AS INTEGER)) AS correct
|
203 |
FROM
|
204 |
results.completions results
|
205 |
JOIN
|
|
|
218 |
AnswerCheck
|
219 |
""")
|
220 |
|
221 |
+
def accuracy_by_model_only_one(conn):
|
222 |
+
query = """
|
223 |
+
WITH FirstResponses AS (
|
224 |
+
SELECT
|
225 |
+
parent_dir AS model,
|
226 |
+
prompt_id,
|
227 |
+
completion,
|
228 |
+
count,
|
229 |
+
ROW_NUMBER() OVER (PARTITION BY parent_dir, prompt_id) AS rn
|
230 |
+
FROM results.completions
|
231 |
+
WHERE parent_dir = 'completions-r1_cursor_hosted' -- Only consider rows where parent_dir is 'r1_cursor_hosted'
|
232 |
+
),
|
233 |
+
AnswerCheck AS (
|
234 |
+
SELECT
|
235 |
+
fr.model,
|
236 |
+
SUM(fr.count) AS total,
|
237 |
+
SUM(fr.count * CAST(check_answer(fr.completion, c.answer) AS INTEGER)) AS correct
|
238 |
+
FROM FirstResponses fr
|
239 |
+
JOIN challenges c ON fr.prompt_id = c.ID
|
240 |
+
WHERE fr.rn = 1 -- Select only the first response per model per prompt
|
241 |
+
GROUP BY fr.model
|
242 |
+
)
|
243 |
+
SELECT
|
244 |
+
model,
|
245 |
+
total,
|
246 |
+
correct,
|
247 |
+
ROUND(correct / total, 2) AS accuracy
|
248 |
+
FROM AnswerCheck;
|
249 |
+
"""
|
250 |
+
return conn.sql(query)
|
251 |
+
|
252 |
+
|
253 |
def main():
|
254 |
parser = argparse.ArgumentParser()
|
255 |
parser.add_argument("--by-model-and-time", action="store_true")
|
256 |
args = parser.parse_args()
|
257 |
+
conn = load_results_sample_one_only()
|
258 |
+
query = """
|
259 |
+
SELECT parent_dir, prompt_id, COUNT(DISTINCT completion) AS completion_count
|
260 |
+
FROM sampled
|
261 |
+
GROUP BY parent_dir, prompt_id
|
262 |
+
HAVING COUNT(DISTINCT completion) == 1;
|
263 |
+
"""
|
264 |
+
wrongones = conn.execute(query).fetchall()
|
265 |
+
assert not wrongones, f"Found {len(wrongones)} prompts with not just one completion"
|
266 |
+
|
267 |
if args.by_model_and_time:
|
268 |
print(accuracy_by_model_and_time(conn))
|
269 |
else:
|