File size: 5,692 Bytes
81108ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172f931
81108ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172f931
81108ac
 
 
172f931
81108ac
 
172f931
81108ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
172f931
81108ac
 
 
172f931
81108ac
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
"""
This program helps us explore model's responses to the benchmark. It is a web
app that displays the following:

1. A list of benchmark items loaded from puzzles_cleaned.csv. The list shows
   the columns ID, challenge, and answer.
2. When we select a puzzle from the list, we see the transcript, Explanation,
   and Editor's Note in textboxes. (Scrollable since they can be long.)
3. The list in (1) also has a column for each model, with checkboxes indicating 
   whether the model's response is correct or not. We load the model responses
   from results.duckdb. That file has a table called completions with
   columns 'prompt_id', 'parent_dir', and 'completion'. The prompt_id can be
   joined with ID from puzzles_cleaned.csv. The parent_dir is the model name.
   The completion is the model response, which we compare with the answer from 
   puzzles_cleaned.csv using the function check_answer defined below.
4. Finally, when an item is selected from the list, we get a dropdown that lets
   us select a model to see the completion from that model.

Note that not every model has a response for every puzzle.
"""
import gradio as gr
from metrics import load_results


def get_model_response(prompt_id, model_name):
    query = f"""
        SELECT completion FROM results.completions 
        WHERE prompt_id = {prompt_id} AND parent_dir = '{model_name}'
    """
    response = conn.sql(query).fetchone()
    return response[0] if response else None

def display_puzzle(puzzle_id):
    query = f"""
        SELECT challenge, answer, transcript, Explanation, "Editor's Notes"
        FROM challenges
        WHERE ID = {puzzle_id}
    """
    puzzle = conn.sql(query).fetchone()
    return puzzle if puzzle else (None, None,None, None, None)

def display_model_response(puzzle_id, model_name):
    response = get_model_response(puzzle_id, model_name)
    split_thoughts = response.split("</think>")
    if len(split_thoughts) > 1:
        response = split_thoughts[-1].strip()
    return "From " + model_name + ":\n" + response if response else "No response from this model."


conn = load_results()

# Get all unique model names
model_names = [item[0] for item in conn.sql("SELECT DISTINCT parent_dir FROM results.completions").fetchall()]
model_names.sort()
# Just for display.
cleaned_model_names = [name.replace("completions-", "") for name in model_names]


def build_table():
    # Construct the query to create two columns for each model: MODEL_answer and MODEL_ok
    query = """
        SELECT c.ID, c.challenge, wrap_text(c.answer, 40) AS answer,
    """

    model_correct_columns = []
    for model in model_names:
        normalized_model_name = model.replace("-", "_")
        model_correct_columns.append(normalized_model_name + "_ok")
        query += f"""
            MAX(CASE WHEN r.parent_dir = '{model}' THEN r.completion ELSE NULL END) AS {normalized_model_name}_answer,
            MAX(CASE WHEN r.parent_dir = '{model}' THEN check_answer(r.completion, c.answer) ELSE NULL END) AS {normalized_model_name}_ok,
        """

    query = query.rstrip(',')  # Remove the trailing comma
    query += """
        clip_text(c.challenge, 40) as challenge_clipped,
        FROM challenges c
        LEFT JOIN results.completions r
        ON c.ID = r.prompt_id
        GROUP BY c.ID, c.challenge, c.answer
    """

    joined_df = conn.sql(query).fetchdf()

    # Transform the model_correct columns to use emojis
    for model in model_names:
        normalized_model_name = model.replace("-", "_")
        joined_df[normalized_model_name + '_ok'] = joined_df[normalized_model_name + '_ok'].apply(
            lambda x: "✅" if x == 1 else ("❌" if x == 0 else "❓")
        )

    return joined_df, model_correct_columns


joined_df, model_correct_columns = build_table()

relabelled_df = joined_df[['ID', 'challenge_clipped', 'answer', *model_correct_columns]].rename(columns={
    'ID': 'ID',
    'challenge_clipped': 'Challenge',
    'answer': 'Answer',
    **{model.replace("-", "_") + '_ok': model.replace("completions-", "") for model in model_names}
}).sort_values(by='ID')

model_columns = {
    index + 3: name for index, name in enumerate(model_names)
}

valid_model_indices = list(model_columns.keys())
default_model = model_columns[valid_model_indices[0]]

def create_interface():
    with gr.Blocks() as demo:
        # Using "markdown" as the datatype makes Gradio interpret newlines.
        puzzle_list = gr.DataFrame(
            value=relabelled_df,
            datatype=["number", "str", "markdown", *["str"] * len(model_correct_columns)],
            # headers=["ID", "Challenge", "Answer", *cleaned_model_names],
        )
        model_response = gr.Textbox(label="Model Response", interactive=False)
        challenge = gr.Textbox(label="Challenge", interactive=False)
        answer = gr.Textbox(label="Answer", interactive=False)
        explanation = gr.Textbox(label="Explanation", interactive=False)
        editors_note = gr.Textbox(label="Editor's Note", interactive=False)
        transcript = gr.Textbox(label="Transcript", interactive=False)
        
        def update_puzzle(evt: gr.SelectData):
            row = evt.index[0]
            model_index = evt.index[1]
            model_name = model_columns[model_index] if model_index in valid_model_indices else default_model
            return (*display_puzzle(row), display_model_response(row, model_name))
        
        puzzle_list.select(
            fn=update_puzzle, 
            inputs=[], 
            outputs=[challenge, answer, transcript, explanation, editors_note, model_response]
        )
    
    demo.launch()


if __name__ == "__main__":
    create_interface()