loan_prediction / train.py
nullHawk's picture
add: training script
eab81f9
raw
history blame
14 kB
import torch
import torch.nn as nn
import torch.optim as optim
from torch.utils.data import DataLoader, TensorDataset
from sklearn.model_selection import train_test_split
import numpy as np
import pandas as pd
import matplotlib.pyplot as plt
from datetime import datetime
import json
import os
from model import (
LoanPredictionANN,
LoanPredictionLightANN,
LoanPredictionDeepANN,
load_processed_data,
calculate_class_weights,
evaluate_model,
plot_training_history,
plot_confusion_matrix,
model_summary
)
class LoanPredictionTrainer:
"""
Comprehensive trainer for Loan Prediction Neural Networks
"""
def __init__(self, model_type='standard', learning_rate=0.001, batch_size=512,
device=None, use_class_weights=True):
"""
Initialize the trainer
Args:
model_type: 'light', 'standard', or 'deep'
learning_rate: Learning rate for optimizer
batch_size: Batch size for training
device: Device to use ('cuda' or 'cpu')
use_class_weights: Whether to use class weights for imbalanced data
"""
self.model_type = model_type
self.learning_rate = learning_rate
self.batch_size = batch_size
self.use_class_weights = use_class_weights
# Set device
if device is None:
self.device = torch.device('cuda' if torch.cuda.is_available() else 'cpu')
else:
self.device = torch.device(device)
print(f"Using device: {self.device}")
# Initialize model
self.model = self._create_model()
self.model.to(self.device)
# Training history
self.train_losses = []
self.val_losses = []
self.train_accuracies = []
self.val_accuracies = []
def _create_model(self):
"""Create model based on specified type"""
if self.model_type == 'light':
return LoanPredictionLightANN()
elif self.model_type == 'standard':
return LoanPredictionANN()
elif self.model_type == 'deep':
return LoanPredictionDeepANN()
else:
raise ValueError("model_type must be 'light', 'standard', or 'deep'")
def prepare_data(self, data_path='data/processed', validation_split=0.2):
"""Load and prepare data for training"""
print("Loading processed data...")
X_train, y_train, X_test, y_test, feature_names = load_processed_data(data_path)
# Split training data into train/validation
X_train, X_val, y_train, y_val = train_test_split(
X_train, y_train, test_size=validation_split,
random_state=42, stratify=y_train
)
# Convert to PyTorch tensors
self.X_train = torch.FloatTensor(X_train).to(self.device)
self.y_train = torch.FloatTensor(y_train).unsqueeze(1).to(self.device)
self.X_val = torch.FloatTensor(X_val).to(self.device)
self.y_val = torch.FloatTensor(y_val).unsqueeze(1).to(self.device)
self.X_test = torch.FloatTensor(X_test).to(self.device)
self.y_test = torch.FloatTensor(y_test).unsqueeze(1).to(self.device)
# Store original numpy arrays for evaluation
self.X_test_np = X_test
self.y_test_np = y_test
self.feature_names = feature_names
# Create data loaders
train_dataset = TensorDataset(self.X_train, self.y_train)
val_dataset = TensorDataset(self.X_val, self.y_val)
self.train_loader = DataLoader(train_dataset, batch_size=self.batch_size, shuffle=True)
self.val_loader = DataLoader(val_dataset, batch_size=self.batch_size, shuffle=False)
# Calculate class weights if needed
if self.use_class_weights:
self.class_weights = calculate_class_weights(y_train)
print(f"Class weights: {self.class_weights}")
else:
self.class_weights = None
print(f"Data prepared:")
print(f" Training samples: {len(X_train):,}")
print(f" Validation samples: {len(X_val):,}")
print(f" Test samples: {len(X_test):,}")
print(f" Features: {len(feature_names)}")
return self
def setup_training(self, weight_decay=1e-5):
"""Setup optimizer and loss function"""
# Optimizer
self.optimizer = optim.Adam(
self.model.parameters(),
lr=self.learning_rate,
weight_decay=weight_decay
)
# Learning rate scheduler
self.scheduler = optim.lr_scheduler.ReduceLROnPlateau(
self.optimizer, mode='min', factor=0.5, patience=10, verbose=True
)
# Loss function
if self.use_class_weights and self.class_weights is not None:
# Weighted BCE loss for imbalanced data
pos_weight = self.class_weights[1] / self.class_weights[0]
self.criterion = nn.BCEWithLogitsLoss(pos_weight=pos_weight.to(self.device))
else:
self.criterion = nn.BCELoss()
print(f"Training setup complete:")
print(f" Optimizer: Adam (lr={self.learning_rate}, weight_decay={weight_decay})")
print(f" Scheduler: ReduceLROnPlateau")
print(f" Loss function: {'Weighted BCE' if self.use_class_weights else 'BCE'}")
return self
def train_epoch(self):
"""Train for one epoch"""
self.model.train()
total_loss = 0.0
correct = 0
total = 0
for batch_idx, (data, target) in enumerate(self.train_loader):
self.optimizer.zero_grad()
output = self.model(data)
if isinstance(self.criterion, nn.BCEWithLogitsLoss):
# Remove sigmoid from model output for BCEWithLogitsLoss
output_logits = output # Assuming output is logits
loss = self.criterion(output_logits, target)
predicted = torch.sigmoid(output_logits) > 0.5
else:
loss = self.criterion(output, target)
predicted = output > 0.5
loss.backward()
self.optimizer.step()
total_loss += loss.item()
total += target.size(0)
correct += predicted.eq(target > 0.5).sum().item()
avg_loss = total_loss / len(self.train_loader)
accuracy = 100. * correct / total
return avg_loss, accuracy
def validate_epoch(self):
"""Validate for one epoch"""
self.model.eval()
total_loss = 0.0
correct = 0
total = 0
with torch.no_grad():
for data, target in self.val_loader:
output = self.model(data)
if isinstance(self.criterion, nn.BCEWithLogitsLoss):
output_logits = output
loss = self.criterion(output_logits, target)
predicted = torch.sigmoid(output_logits) > 0.5
else:
loss = self.criterion(output, target)
predicted = output > 0.5
total_loss += loss.item()
total += target.size(0)
correct += predicted.eq(target > 0.5).sum().item()
avg_loss = total_loss / len(self.val_loader)
accuracy = 100. * correct / total
return avg_loss, accuracy
def train(self, num_epochs=100, early_stopping_patience=20, save_best=True):
"""Train the model"""
print(f"\nStarting training for {num_epochs} epochs...")
print("=" * 60)
best_val_loss = float('inf')
patience_counter = 0
for epoch in range(1, num_epochs + 1):
# Train
train_loss, train_acc = self.train_epoch()
# Validate
val_loss, val_acc = self.validate_epoch()
# Update learning rate
self.scheduler.step(val_loss)
# Store history
self.train_losses.append(train_loss)
self.val_losses.append(val_loss)
self.train_accuracies.append(train_acc)
self.val_accuracies.append(val_acc)
# Print progress
if epoch % 10 == 0 or epoch == 1:
print(f'Epoch {epoch:3d}/{num_epochs}: '
f'Train Loss: {train_loss:.4f}, Train Acc: {train_acc:.2f}% | '
f'Val Loss: {val_loss:.4f}, Val Acc: {val_acc:.2f}%')
# Early stopping
if val_loss < best_val_loss:
best_val_loss = val_loss
patience_counter = 0
if save_best:
self.save_model('best_model.pth')
else:
patience_counter += 1
if patience_counter >= early_stopping_patience:
print(f"Early stopping triggered after {epoch} epochs")
break
print("=" * 60)
print("Training completed!")
# Load best model if saved
if save_best and os.path.exists('best_model.pth'):
self.load_model('best_model.pth')
print("Loaded best model weights.")
return self
def evaluate(self, threshold=0.5):
"""Evaluate the model on test set"""
print("\nEvaluating model on test set...")
metrics, y_pred, y_pred_proba = evaluate_model(
self.model, self.X_test_np, self.y_test_np, threshold
)
print("\nTest Set Performance:")
print("-" * 30)
for metric, value in metrics.items():
print(f"{metric.capitalize()}: {value:.4f}")
# Plot confusion matrix
cm = plot_confusion_matrix(self.y_test_np, y_pred)
# Plot training history
plot_training_history(
self.train_losses, self.val_losses,
self.train_accuracies, self.val_accuracies
)
return metrics, y_pred, y_pred_proba
def save_model(self, filepath):
"""Save model and training state"""
torch.save({
'model_state_dict': self.model.state_dict(),
'optimizer_state_dict': self.optimizer.state_dict(),
'model_type': self.model_type,
'learning_rate': self.learning_rate,
'batch_size': self.batch_size,
'train_losses': self.train_losses,
'val_losses': self.val_losses,
'train_accuracies': self.train_accuracies,
'val_accuracies': self.val_accuracies,
'feature_names': self.feature_names
}, filepath)
def load_model(self, filepath):
"""Load model and training state"""
checkpoint = torch.load(filepath, map_location=self.device)
self.model.load_state_dict(checkpoint['model_state_dict'])
self.optimizer.load_state_dict(checkpoint['optimizer_state_dict'])
# Load training history if available
if 'train_losses' in checkpoint:
self.train_losses = checkpoint['train_losses']
self.val_losses = checkpoint['val_losses']
self.train_accuracies = checkpoint['train_accuracies']
self.val_accuracies = checkpoint['val_accuracies']
print(f"Model loaded from {filepath}")
def get_model_summary(self):
"""Print model summary"""
model_summary(self.model)
def main():
"""Main training function"""
print("Loan Prediction Neural Network Training")
print("=" * 50)
# Configuration
config = {
'model_type': 'standard', # 'light', 'standard', 'deep'
'learning_rate': 0.001,
'batch_size': 512,
'num_epochs': 100,
'weight_decay': 1e-5,
'early_stopping_patience': 20,
'use_class_weights': True,
'validation_split': 0.2
}
print("Configuration:")
for key, value in config.items():
print(f" {key}: {value}")
# Initialize trainer
trainer = LoanPredictionTrainer(
model_type=config['model_type'],
learning_rate=config['learning_rate'],
batch_size=config['batch_size'],
use_class_weights=config['use_class_weights']
)
# Show model architecture
trainer.get_model_summary()
# Prepare data and setup training
trainer.prepare_data(validation_split=config['validation_split'])
trainer.setup_training(weight_decay=config['weight_decay'])
# Train the model
trainer.train(
num_epochs=config['num_epochs'],
early_stopping_patience=config['early_stopping_patience']
)
# Evaluate the model
metrics, predictions, probabilities = trainer.evaluate()
# Save final model
timestamp = datetime.now().strftime("%Y%m%d_%H%M%S")
model_filename = f"loan_prediction_model_{config['model_type']}_{timestamp}.pth"
trainer.save_model(model_filename)
print(f"\nFinal model saved as: {model_filename}")
# Save training results
results = {
'config': config,
'final_metrics': metrics,
'training_history': {
'train_losses': trainer.train_losses,
'val_losses': trainer.val_losses,
'train_accuracies': trainer.train_accuracies,
'val_accuracies': trainer.val_accuracies
}
}
results_filename = f"training_results_{timestamp}.json"
with open(results_filename, 'w') as f:
json.dump(results, f, indent=2)
print(f"Training results saved as: {results_filename}")
print("\nTraining complete!")
if __name__ == "__main__":
main()