File size: 1,138 Bytes
9a41f63
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
import torch
import torch.nn as nn
from models.encoder import Encoder
from models.decoder import Decoder

class Seq2Seq(nn.Module):
    def __init__(self, encoder, decoder, device):
        super().__init__()
        self.encoder = encoder
        self.decoder = decoder
        self.device = device
        
    def forward(self, src, trg, teacher_forcing_ratio=0.5):
        # src: [batch_size, src_len]
        # trg: [batch_size, trg_len]
        
        batch_size = trg.shape[0]
        trg_len = trg.shape[1]
        trg_vocab_size = self.decoder.output_dim
        
        outputs = torch.zeros(trg_len, batch_size, trg_vocab_size).to(self.device)
        
        encoder_outputs, hidden = self.encoder(src)
        
        input = trg[:, 0]  # First token is <start>
        
        for t in range(1, trg_len):
            output, hidden = self.decoder(input, hidden, encoder_outputs)
            outputs[t] = output
            teacher_force = torch.rand(1) < teacher_forcing_ratio
            top1 = output.argmax(1)
            input = trg[:, t] if teacher_force else top1
        
        return outputs.permute(1, 0, 2)