import cv2 import os import numpy as np from tensorflow.keras.optimizers import Adam from tensorflow.keras.models import load_model import time class Classifier: def __init__(self, is_image, input_path): self.is_image = is_image self.counter = 0 self.classifier = load_model('model.h5') self.face_detector = cv2.CascadeClassifier( 'haarcascade_frontalface_default.xml') cv2.ocl.setUseOpenCL(False) self.labels = {0: "Angry", 1: "Disgusted", 2: "Fearful", 3: "Happy", 4: "Neutral", 5: "Sad", 6: "Surprised"} self.input_path = input_path self.output_path = "result/" + self.input_path.split('/')[-1] os.makedirs("result", exist_ok=True) print("Models have been loaded") # def get_model(self): # model = load_model(model_path, compile=False) # model.compile(optimizer=Adam(learning_rate=1e-3), # loss='categorical_crossentropy', metrics=['accuracy']) def predict(self, frame): faces = self.face_detector.detectMultiScale( frame, scaleFactor=1.3, minNeighbors=5) gray = cv2.cvtColor(frame, cv2.COLOR_BGR2GRAY) for (x, y, w, h) in faces: cv2.rectangle(frame, (x, y-50), (x+w, y+h+10), (255, 0, 0), 2) roi_gray = gray[y:y + h, x:x + w] cropped_img = np.expand_dims(np.expand_dims( cv2.resize(roi_gray, (48, 48)), -1), 0) prediction = self.classifier.predict(cropped_img) maxindex = int(np.argmax(prediction)) cv2.putText(frame, self.labels[maxindex], (x+20, y-60), cv2.FONT_HERSHEY_SIMPLEX, 2, (0, 0, 255), 2, cv2.LINE_AA) return frame def run(self): start_time = time.time() if self.is_image: image_arr = cv2.imread(self.input_path) predicted_frame = self.predict(frame=image_arr) cv2.imwrite(self.output_path, predicted_frame) else: cap = cv2.VideoCapture(self.input_path) # Get video properties frame_width = int(cap.get(3)) frame_height = int(cap.get(4)) fps = int(cap.get(5)) # Define the codec and create a VideoWriter object to save the output video as .MOV fourcc = cv2.VideoWriter_fourcc('a', 'v', 'c', '1') out = cv2.VideoWriter(self.output_path, fourcc, fps, (frame_width, frame_height)) while True: ret, frame = cap.read() if not ret: break predicted_frame = self.predict(frame=frame) out.write(predicted_frame) total_time = str(round(time.time() - start_time, 3)) + "s" return self.output_path, total_time