nroggendorff commited on
Commit
4d88688
·
verified ·
1 Parent(s): 69a66f0

Update app.py

Browse files
Files changed (1) hide show
  1. app.py +15 -3
app.py CHANGED
@@ -7,10 +7,21 @@ from diffusers import StableDiffusionPipeline
7
  pipeline = StableDiffusionPipeline.from_pretrained(
8
  "nroggendorff/zelda-diffusion"
9
  ).to("cuda")
 
10
 
11
  @spaces.GPU
12
- def generate(prompt, negative_prompt, width, height, sample_steps):
13
- return pipeline(prompt=prompt, negative_prompt=negative_prompt, width=width, height=height, num_inference_steps=sample_steps).images[0]
 
 
 
 
 
 
 
 
 
 
14
 
15
  with gr.Blocks() as interface:
16
  with gr.Column():
@@ -27,10 +38,11 @@ with gr.Blocks() as interface:
27
  with gr.Column():
28
  width = gr.Slider(label="Width", info="The width in pixels of the generated image.", value=512, minimum=128, maximum=4096, step=64, interactive=True)
29
  height = gr.Slider(label="Height", info="The height in pixels of the generated image.", value=512, minimum=128, maximum=4096, step=64, interactive=True)
 
30
  with gr.Column():
31
  sampling_steps = gr.Slider(label="Sampling Steps", info="The number of denoising steps.", value=20, minimum=4, maximum=50, step=1, interactive=True)
32
 
33
- generate_button.click(fn=generate, inputs=[prompt, negative_prompt, width, height, sampling_steps], outputs=[output])
34
 
35
  if __name__ == "__main__":
36
  interface.launch()
 
7
  pipeline = StableDiffusionPipeline.from_pretrained(
8
  "nroggendorff/zelda-diffusion"
9
  ).to("cuda")
10
+ img2img = StableDiffusionImg2ImgPipeline(**text2img.components)
11
 
12
  @spaces.GPU
13
+ def generate(prompt, negative_prompt, width, height, sample_steps, hrf):
14
+ image = pipeline(prompt=prompt, negative_prompt=negative_prompt, width=width, height=height, num_inference_steps=sample_steps).images[0]
15
+ if hrf:
16
+ return img2img(
17
+ prompt=prompt,
18
+ image=image,
19
+ strength=0.75,
20
+ width=width * 2,
21
+ height=height * 2
22
+ ).images[0]
23
+ else:
24
+ return image
25
 
26
  with gr.Blocks() as interface:
27
  with gr.Column():
 
38
  with gr.Column():
39
  width = gr.Slider(label="Width", info="The width in pixels of the generated image.", value=512, minimum=128, maximum=4096, step=64, interactive=True)
40
  height = gr.Slider(label="Height", info="The height in pixels of the generated image.", value=512, minimum=128, maximum=4096, step=64, interactive=True)
41
+ hrf = gr.Checkbox(label="High-Res Fix", info="Run through img2img.", value=False)
42
  with gr.Column():
43
  sampling_steps = gr.Slider(label="Sampling Steps", info="The number of denoising steps.", value=20, minimum=4, maximum=50, step=1, interactive=True)
44
 
45
+ generate_button.click(fn=generate, inputs=[prompt, negative_prompt, width, height, sampling_steps, hrf], outputs=[output])
46
 
47
  if __name__ == "__main__":
48
  interface.launch()