Spaces:
Paused
Paused
Update app.py
Browse files
app.py
CHANGED
|
@@ -1,3 +1,5 @@
|
|
|
|
|
|
|
|
| 1 |
import gc
|
| 2 |
|
| 3 |
import numpy as np
|
|
@@ -10,8 +12,12 @@ from datasets import load_dataset
|
|
| 10 |
from tokenizers import ByteLevelBPETokenizer
|
| 11 |
import trl
|
| 12 |
|
|
|
|
|
|
|
| 13 |
dataset = load_dataset("nroggendorff/openhermes", split="train").select(range(int(1e+4)))
|
| 14 |
|
|
|
|
|
|
|
| 15 |
def get_training_corpus():
|
| 16 |
for i in range(0, len(dataset), 1000):
|
| 17 |
yield dataset[i : i + 1000]["text"]
|
|
@@ -58,6 +64,8 @@ tokenizer.save_pretrained("/tmp/llama-tokenizer")
|
|
| 58 |
tokenizer = AutoTokenizer.from_pretrained("/tmp/llama-tokenizer")
|
| 59 |
print(tokenizer.apply_chat_template([{"role": "user", "content": "Why is the sky blue?"}, {"role": "assistant", "content": "Due to rayleigh scattering."}, {"role": "user", "content": "That's cool."}, {"role": "assistant", "content": "Yeah, I agree."}], tokenize=False))
|
| 60 |
|
|
|
|
|
|
|
| 61 |
config = LlamaConfig(
|
| 62 |
vocab_size=tokenizer.vocab_size,
|
| 63 |
hidden_size=int(512 / 1),
|
|
@@ -76,6 +84,8 @@ config = LlamaConfig(
|
|
| 76 |
|
| 77 |
model = LlamaForCausalLM(config)
|
| 78 |
|
|
|
|
|
|
|
| 79 |
def format_prompts(examples):
|
| 80 |
texts = []
|
| 81 |
for text in examples['text']:
|
|
@@ -96,6 +106,8 @@ dataset = dataset.map(format_prompts, batched=True)
|
|
| 96 |
|
| 97 |
print(dataset['text'][2])
|
| 98 |
|
|
|
|
|
|
|
| 99 |
args = TrainingArguments(
|
| 100 |
output_dir="mayo",
|
| 101 |
num_train_epochs=1,
|
|
@@ -122,8 +134,12 @@ torch.cuda.set_device(0)
|
|
| 122 |
gc.collect()
|
| 123 |
torch.cuda.empty_cache()
|
| 124 |
|
|
|
|
|
|
|
| 125 |
trainer.train()
|
| 126 |
-
|
|
|
|
|
|
|
| 127 |
#trainer.push_to_hub()
|
| 128 |
trained_model = trainer.model
|
| 129 |
trained_tokenizer = trainer.tokenizer
|
|
@@ -132,4 +148,4 @@ repo_id = "makeshift-mayo"
|
|
| 132 |
trained_model.push_to_hub(repo_id)
|
| 133 |
trained_tokenizer.push_to_hub(repo_id)
|
| 134 |
|
| 135 |
-
raise RuntimeError("The script
|
|
|
|
| 1 |
+
print('Importing goodies..')
|
| 2 |
+
|
| 3 |
import gc
|
| 4 |
|
| 5 |
import numpy as np
|
|
|
|
| 12 |
from tokenizers import ByteLevelBPETokenizer
|
| 13 |
import trl
|
| 14 |
|
| 15 |
+
print("Loading dataset..")
|
| 16 |
+
|
| 17 |
dataset = load_dataset("nroggendorff/openhermes", split="train").select(range(int(1e+4)))
|
| 18 |
|
| 19 |
+
print("Setting up tokenizer..")
|
| 20 |
+
|
| 21 |
def get_training_corpus():
|
| 22 |
for i in range(0, len(dataset), 1000):
|
| 23 |
yield dataset[i : i + 1000]["text"]
|
|
|
|
| 64 |
tokenizer = AutoTokenizer.from_pretrained("/tmp/llama-tokenizer")
|
| 65 |
print(tokenizer.apply_chat_template([{"role": "user", "content": "Why is the sky blue?"}, {"role": "assistant", "content": "Due to rayleigh scattering."}, {"role": "user", "content": "That's cool."}, {"role": "assistant", "content": "Yeah, I agree."}], tokenize=False))
|
| 66 |
|
| 67 |
+
print("Configuring..")
|
| 68 |
+
|
| 69 |
config = LlamaConfig(
|
| 70 |
vocab_size=tokenizer.vocab_size,
|
| 71 |
hidden_size=int(512 / 1),
|
|
|
|
| 84 |
|
| 85 |
model = LlamaForCausalLM(config)
|
| 86 |
|
| 87 |
+
print("Mapping dataset..")
|
| 88 |
+
|
| 89 |
def format_prompts(examples):
|
| 90 |
texts = []
|
| 91 |
for text in examples['text']:
|
|
|
|
| 106 |
|
| 107 |
print(dataset['text'][2])
|
| 108 |
|
| 109 |
+
print("Defining trainer..")
|
| 110 |
+
|
| 111 |
args = TrainingArguments(
|
| 112 |
output_dir="mayo",
|
| 113 |
num_train_epochs=1,
|
|
|
|
| 134 |
gc.collect()
|
| 135 |
torch.cuda.empty_cache()
|
| 136 |
|
| 137 |
+
print("Training..")
|
| 138 |
+
|
| 139 |
trainer.train()
|
| 140 |
+
|
| 141 |
+
print("Pushing to hub..")
|
| 142 |
+
|
| 143 |
#trainer.push_to_hub()
|
| 144 |
trained_model = trainer.model
|
| 145 |
trained_tokenizer = trainer.tokenizer
|
|
|
|
| 148 |
trained_model.push_to_hub(repo_id)
|
| 149 |
trained_tokenizer.push_to_hub(repo_id)
|
| 150 |
|
| 151 |
+
raise RuntimeError("The script is finished.")
|