Spaces:
Paused
Paused
Create train.py
Browse files
train.py
ADDED
|
@@ -0,0 +1,128 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
import os
|
| 2 |
+
|
| 3 |
+
import torch
|
| 4 |
+
import trl
|
| 5 |
+
|
| 6 |
+
from transformers import AutoTokenizer, LlamaConfig, LlamaForCausalLM, TrainingArguments, PreTrainedTokenizerFast
|
| 7 |
+
from datasets import load_dataset
|
| 8 |
+
from tokenizers import ByteLevelBPETokenizer
|
| 9 |
+
|
| 10 |
+
MAX_SEQ_LENGTH = 512
|
| 11 |
+
BATCH_SIZE = 768
|
| 12 |
+
EPOCHS = 8
|
| 13 |
+
LEARNING_RATE = 1e-4
|
| 14 |
+
FP16 = True
|
| 15 |
+
FACTOR = 2
|
| 16 |
+
VOCAB_SIZE = 3200
|
| 17 |
+
INPUT_DATASET = "nroggendorff/elephant"
|
| 18 |
+
OUTPUT_REPO = "smallama"
|
| 19 |
+
|
| 20 |
+
def load_data():
|
| 21 |
+
dataset = load_dataset(INPUT_DATASET, split="train")
|
| 22 |
+
return dataset
|
| 23 |
+
|
| 24 |
+
def create_tokenizer(training_corpus):
|
| 25 |
+
tokenizer = ByteLevelBPETokenizer()
|
| 26 |
+
tokenizer.train_from_iterator(
|
| 27 |
+
training_corpus,
|
| 28 |
+
vocab_size=VOCAB_SIZE,
|
| 29 |
+
min_frequency=2,
|
| 30 |
+
special_tokens=["<s>", "<pad>", "</s>", "<unk>", "<mask>", "<|user|>", "<|bot|>", "<|end|>"]
|
| 31 |
+
)
|
| 32 |
+
|
| 33 |
+
fast_tokenizer = PreTrainedTokenizerFast(tokenizer_object=tokenizer._tokenizer)
|
| 34 |
+
return fast_tokenizer
|
| 35 |
+
|
| 36 |
+
def get_training_corpus(dataset):
|
| 37 |
+
for i in range(0, len(dataset), 1000):
|
| 38 |
+
yield dataset[i : i + 1000]["text"]
|
| 39 |
+
|
| 40 |
+
def format_prompts(examples, tokenizer):
|
| 41 |
+
texts = []
|
| 42 |
+
for text in examples['text']:
|
| 43 |
+
conversation = []
|
| 44 |
+
parts = text.split('<|end|>')
|
| 45 |
+
for i in range(0, len(parts) - 1, 2):
|
| 46 |
+
prompt = parts[i].replace("<|user|>", "")
|
| 47 |
+
response = parts[i + 1].replace("<|bot|>", "")
|
| 48 |
+
conversation.append({"role": "user", "content": prompt})
|
| 49 |
+
conversation.append({"role": "assistant", "content": response})
|
| 50 |
+
formatted_conversation = tokenizer.apply_chat_template(conversation, tokenize=False)
|
| 51 |
+
texts.append(formatted_conversation)
|
| 52 |
+
return {"text": texts}
|
| 53 |
+
|
| 54 |
+
def create_model(tokenizer):
|
| 55 |
+
config = LlamaConfig(
|
| 56 |
+
vocab_size=tokenizer.vocab_size,
|
| 57 |
+
hidden_size=FACTOR,
|
| 58 |
+
intermediate_size=FACTOR * 2,
|
| 59 |
+
num_hidden_layers=max(1, FACTOR // 64),
|
| 60 |
+
num_attention_heads=max(1, FACTOR // 64),
|
| 61 |
+
max_position_embeddings=MAX_SEQ_LENGTH,
|
| 62 |
+
rms_norm_eps=1e-6,
|
| 63 |
+
initializer_range=0.02,
|
| 64 |
+
use_cache=True,
|
| 65 |
+
pad_token_id=tokenizer.pad_token_id,
|
| 66 |
+
bos_token_id=tokenizer.bos_token_id,
|
| 67 |
+
eos_token_id=tokenizer.eos_token_id,
|
| 68 |
+
tie_word_embeddings=False,
|
| 69 |
+
)
|
| 70 |
+
|
| 71 |
+
model = LlamaForCausalLM(config)
|
| 72 |
+
return model
|
| 73 |
+
|
| 74 |
+
def configure_tokenizer(tokenizer):
|
| 75 |
+
special_tokens = {
|
| 76 |
+
"bos_token": "<s>",
|
| 77 |
+
"eos_token": "</s>",
|
| 78 |
+
"unk_token": "<unk>",
|
| 79 |
+
"pad_token": "<pad>",
|
| 80 |
+
"mask_token": "<mask>",
|
| 81 |
+
"additional_special_tokens": ["<|user|>", "<|bot|>", "<|end|>"]
|
| 82 |
+
}
|
| 83 |
+
tokenizer.add_special_tokens(special_tokens)
|
| 84 |
+
|
| 85 |
+
tokenizer.user_token_id = tokenizer.convert_tokens_to_ids("<|user|>")
|
| 86 |
+
tokenizer.assistant_token_id = tokenizer.convert_tokens_to_ids("<|bot|>")
|
| 87 |
+
|
| 88 |
+
chat_template = "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + message['content'] + '<|end|>\n' }}{% elif message['role'] == 'assistant' %}{{ '<|bot|>\n' + message['content'] + '<|end|>\n' }}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}{{ eos_token }}"
|
| 89 |
+
tokenizer.chat_template = chat_template
|
| 90 |
+
|
| 91 |
+
def train_model(model, tokenizer, dataset):
|
| 92 |
+
args = TrainingArguments(
|
| 93 |
+
output_dir="model",
|
| 94 |
+
num_train_epochs=EPOCHS,
|
| 95 |
+
per_device_train_batch_size=BATCH_SIZE,
|
| 96 |
+
learning_rate=LEARNING_RATE,
|
| 97 |
+
fp16=FP16,
|
| 98 |
+
optim="sgd"
|
| 99 |
+
)
|
| 100 |
+
dataset = dataset.map(lambda examples: format_prompts(examples, tokenizer), batched=True)
|
| 101 |
+
trainer = trl.SFTTrainer(
|
| 102 |
+
model=model,
|
| 103 |
+
tokenizer=tokenizer,
|
| 104 |
+
args=args,
|
| 105 |
+
train_dataset=dataset,
|
| 106 |
+
dataset_text_field='text',
|
| 107 |
+
max_seq_length=MAX_SEQ_LENGTH
|
| 108 |
+
)
|
| 109 |
+
trainer.train()
|
| 110 |
+
|
| 111 |
+
trained_model = trainer.model
|
| 112 |
+
trained_tokenizer = trainer.tokenizer
|
| 113 |
+
|
| 114 |
+
repo_id = OUTPUT_REPO
|
| 115 |
+
trained_model.push_to_hub(repo_id)
|
| 116 |
+
trained_tokenizer.push_to_hub(repo_id)
|
| 117 |
+
|
| 118 |
+
def main():
|
| 119 |
+
dataset = load_data()
|
| 120 |
+
training_corpus = get_training_corpus(dataset)
|
| 121 |
+
tokenizer = create_tokenizer(training_corpus)
|
| 122 |
+
configure_tokenizer(tokenizer)
|
| 123 |
+
model = create_model(tokenizer)
|
| 124 |
+
train_model(model, tokenizer, dataset)
|
| 125 |
+
|
| 126 |
+
if __name__ == "__main__":
|
| 127 |
+
main()
|
| 128 |
+
raise RuntimeError("The script is finished.")
|