File size: 4,438 Bytes
d72e6ae
 
 
 
 
 
 
 
 
 
bbe9459
faf4f27
304de92
2ba42c9
d72e6ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
304de92
 
 
d72e6ae
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
import os

import torch
import trl

from transformers import AutoTokenizer, LlamaConfig, LlamaForCausalLM, TrainingArguments, PreTrainedTokenizerFast
from datasets import load_dataset
from tokenizers import ByteLevelBPETokenizer

MAX_SEQ_LENGTH = 128
BATCH_SIZE = 256
EPOCHS = 8
LEARNING_RATE = 1e-5
FACTOR = 128
VOCAB_SIZE = 3200
INPUT_DATASET = "nroggendorff/elephant"
OUTPUT_REPO = "smallama"

def load_data():
    dataset = load_dataset(INPUT_DATASET, split="train")
    return dataset

def create_tokenizer(training_corpus):
    tokenizer = ByteLevelBPETokenizer()
    tokenizer.train_from_iterator(
        training_corpus,
        vocab_size=VOCAB_SIZE,
        min_frequency=2,
        special_tokens=["<s>", "<pad>", "</s>", "<unk>", "<mask>", "<|user|>", "<|bot|>", "<|end|>"]
    )

    fast_tokenizer = PreTrainedTokenizerFast(tokenizer_object=tokenizer._tokenizer)
    return fast_tokenizer

def get_training_corpus(dataset):
    for i in range(0, len(dataset), 1000):
        yield dataset[i : i + 1000]["text"]

def format_prompts(examples, tokenizer):
    texts = []
    for text in examples['text']:
        conversation = []
        parts = text.split('<|end|>')
        for i in range(0, len(parts) - 1, 2):
            prompt = parts[i].replace("<|user|>", "")
            response = parts[i + 1].replace("<|bot|>", "")
            conversation.append({"role": "user", "content": prompt})
            conversation.append({"role": "assistant", "content": response})
        formatted_conversation = tokenizer.apply_chat_template(conversation, tokenize=False)
        texts.append(formatted_conversation)
    return {"text": texts}

def create_model(tokenizer):
    config = LlamaConfig(
        vocab_size=tokenizer.vocab_size,
        hidden_size=FACTOR,
        intermediate_size=FACTOR * 4,
        num_hidden_layers=FACTOR // 32,
        num_attention_heads=FACTOR // 64,
        max_position_embeddings=MAX_SEQ_LENGTH,
        rms_norm_eps=1e-6,
        initializer_range=0.02,
        use_cache=True,
        pad_token_id=tokenizer.pad_token_id,
        bos_token_id=tokenizer.bos_token_id,
        eos_token_id=tokenizer.eos_token_id,
        tie_word_embeddings=False,
    )
    
    model = LlamaForCausalLM(config)
    return model

def configure_tokenizer(tokenizer):
    special_tokens = {
        "bos_token": "<s>",
        "eos_token": "</s>",
        "unk_token": "<unk>",
        "pad_token": "<pad>",
        "mask_token": "<mask>",
        "additional_special_tokens": ["<|user|>", "<|bot|>", "<|end|>"]
    }
    tokenizer.add_special_tokens(special_tokens)
    
    tokenizer.user_token_id = tokenizer.convert_tokens_to_ids("<|user|>")
    tokenizer.assistant_token_id = tokenizer.convert_tokens_to_ids("<|bot|>")
    
    chat_template = "{{ bos_token }}{% for message in messages %}{% if (message['role'] == 'user') != (loop.index0 % 2 == 0) %}{{ raise_exception('Conversation roles must alternate user/assistant/user/assistant/...') }}{% endif %}{% if message['role'] == 'user' %}{{ '<|user|>\n' + message['content'] + '<|end|>\n' }}{% elif message['role'] == 'assistant' %}{{ '<|bot|>\n' + message['content'] + '<|end|>\n' }}{% else %}{{ raise_exception('Only user and assistant roles are supported!') }}{% endif %}{% endfor %}{{ eos_token }}"
    tokenizer.chat_template = chat_template

def train_model(model, tokenizer, dataset):
    args = TrainingArguments(
        output_dir="model",
        num_train_epochs=EPOCHS,
        per_device_train_batch_size=BATCH_SIZE,
        learning_rate=LEARNING_RATE,
        optim="sgd"
    )
    dataset = dataset.map(lambda examples: format_prompts(examples, tokenizer), batched=True)
    trainer = trl.SFTTrainer(
        model=model,
        tokenizer=tokenizer,
        args=args,
        train_dataset=dataset,
        dataset_text_field='text',
        max_seq_length=MAX_SEQ_LENGTH
    )
    trainer.train()
    
    trained_model = trainer.model
    trained_tokenizer = trainer.tokenizer
    
    repo_id = OUTPUT_REPO
    trained_model.push_to_hub(repo_id)
    trained_tokenizer.push_to_hub(repo_id)

def main():
    dataset = load_data()
    training_corpus = get_training_corpus(dataset)
    tokenizer = create_tokenizer(training_corpus)
    configure_tokenizer(tokenizer)
    model = create_model(tokenizer)
    train_model(model, tokenizer, dataset)

if __name__ == "__main__":
    main()
    raise RuntimeError("The script is finished.")