import streamlit as st import plotly.express as px import torch from torch import nn from transformers import AutoTokenizer, AutoModelForSequenceClassification deftxt = "I hate you cancerous insects so much" txt = st.text_area('Text to analyze', deftxt) # load tokenizer and model weights tokenizer = AutoTokenizer.from_pretrained("s-nlp/roberta_toxicity_classifier") model = AutoModelForSequenceClassification.from_pretrained("s-nlp/roberta_toxicity_classifier") batch = tokenizer.encode(txt, return_tensors='pt') # e.g. "logits":"tensor([[ 4.8982, -5.1952]], grad_fn=)" result = model(batch) # get probabilities prediction = nn.functional.softmax(result.logits, dim=-1) print(prediction) #fig = px.bar(result, x="", y="", orientation='h') #fig.show()