import streamlit as st import torch import plotly.express as px from transformers import AutoTokenizer, AutoModelForSequenceClassification deftxt = "I hate you cancerous insects so much" txt = st.text_area('Text to analyze', deftxt) # load tokenizer and model weights tokenizer = AutoTokenizer.from_pretrained("s-nlp/roberta_toxicity_classifier") model = AutoModelForSequenceClassification.from_pretrained("s-nlp/roberta_toxicity_classifier") # prepare the input batch = tokenizer.encode('txt', return_tensors='pt') # inference result = model(batch) print(result) #fig = px.bar(result, x="", y="", orientation='h') #fig.show()