Spaces:
Runtime error
Runtime error
cleanup
Browse files
app.py
CHANGED
|
@@ -12,7 +12,6 @@ st.button("Submit Text")
|
|
| 12 |
|
| 13 |
# Load tokenizer and model weights, try to default to RoBERTa.
|
| 14 |
# Huggingface does not support Python 3.10 match statements and I'm too lazy to implement an equivalent.
|
| 15 |
-
|
| 16 |
if (option == "RoBERTa"):
|
| 17 |
tokenizerPath = "s-nlp/roberta_toxicity_classifier"
|
| 18 |
modelPath = "s-nlp/roberta_toxicity_classifier"
|
|
@@ -37,16 +36,15 @@ else:
|
|
| 37 |
tokenizer = AutoTokenizer.from_pretrained(tokenizerPath)
|
| 38 |
model = AutoModelForSequenceClassification.from_pretrained(modelPath)
|
| 39 |
|
| 40 |
-
#
|
| 41 |
# RoBERTA: [0]: neutral, [1]: toxic
|
| 42 |
encoding = tokenizer.encode(txt, return_tensors='pt')
|
| 43 |
result = model(encoding)
|
| 44 |
|
| 45 |
-
#
|
| 46 |
if (result.logits.size(dim=1) < 2):
|
| 47 |
pad = (0, 1)
|
| 48 |
result.logits = nn.functional.pad(result.logits, pad, "constant", 0)
|
| 49 |
-
st.write(result)
|
| 50 |
prediction = nn.functional.softmax(result.logits, dim=-1)
|
| 51 |
neutralProb = prediction.data[0][neutralIndex]
|
| 52 |
toxicProb = prediction.data[0][toxicIndex]
|
|
|
|
| 12 |
|
| 13 |
# Load tokenizer and model weights, try to default to RoBERTa.
|
| 14 |
# Huggingface does not support Python 3.10 match statements and I'm too lazy to implement an equivalent.
|
|
|
|
| 15 |
if (option == "RoBERTa"):
|
| 16 |
tokenizerPath = "s-nlp/roberta_toxicity_classifier"
|
| 17 |
modelPath = "s-nlp/roberta_toxicity_classifier"
|
|
|
|
| 36 |
tokenizer = AutoTokenizer.from_pretrained(tokenizerPath)
|
| 37 |
model = AutoModelForSequenceClassification.from_pretrained(modelPath)
|
| 38 |
|
| 39 |
+
# Run encoding through model to get classification output.
|
| 40 |
# RoBERTA: [0]: neutral, [1]: toxic
|
| 41 |
encoding = tokenizer.encode(txt, return_tensors='pt')
|
| 42 |
result = model(encoding)
|
| 43 |
|
| 44 |
+
# Transform logit to get probabilities.
|
| 45 |
if (result.logits.size(dim=1) < 2):
|
| 46 |
pad = (0, 1)
|
| 47 |
result.logits = nn.functional.pad(result.logits, pad, "constant", 0)
|
|
|
|
| 48 |
prediction = nn.functional.softmax(result.logits, dim=-1)
|
| 49 |
neutralProb = prediction.data[0][neutralIndex]
|
| 50 |
toxicProb = prediction.data[0][toxicIndex]
|