# Copyright (c) Facebook, Inc. and its affiliates. # Copied from: https://github.com/facebookresearch/detectron2/blob/master/demo/predictor.py import atexit import bisect import multiprocessing as mp from collections import deque import pdb import cv2 import copy import torch import numpy as np import detectron2.data.transforms as T from detectron2.data import MetadataCatalog from detectron2.engine.defaults import DefaultPredictor from detectron2.utils.video_visualizer import VideoVisualizer from detectron2.utils.visualizer import ColorMode, Visualizer from mask2former.data.dataset_mappers.crop_augmentations import BatchResizeShortestEdge, EntityCrop, EntityCropTransform class VisualizationDemo(object): def __init__(self, cfg, instance_mode=ColorMode.IMAGE, parallel=False): """ Args: cfg (CfgNode): instance_mode (ColorMode): parallel (bool): whether to run the model in different processes from visualization. Useful since the visualization logic can be slow. """ self.metadata = MetadataCatalog.get( cfg.DATASETS.TEST[0] if len(cfg.DATASETS.TEST) else "__unused" ) self.cpu_device = torch.device("cpu") self.instance_mode = instance_mode self.parallel = parallel if parallel: num_gpu = torch.cuda.device_count() self.predictor = AsyncPredictor(cfg, num_gpus=num_gpu) else: self.predictor = CropFormerPredictor(cfg) def run_on_image(self, image): """ Args: image (np.ndarray): an image of shape (H, W, C) (in BGR order). This is the format used by OpenCV. Returns: predictions (dict): the output of the model. vis_output (VisImage): the visualized image output. """ predictions = self.predictor(image) return predictions class CropFormerPredictor(DefaultPredictor): """ """ def __init__(self, cfg): super().__init__(cfg) def generate_img_augs(self): shortest_side = np.random.choice([self.cfg.INPUT.MIN_SIZE_TEST]) augs = [ T.ResizeShortestEdge( (shortest_side,), self.cfg.INPUT.MAX_SIZE_TEST, self.cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING, ), ] # Build original image augmentation crop_augs = [] entity_crops = EntityCrop(self.cfg.ENTITY.CROP_AREA_RATIO, self.cfg.ENTITY.CROP_STRIDE_RATIO, self.cfg.ENTITY.CROP_SAMPLE_NUM_TEST, False) crop_augs.append(entity_crops) entity_resize = BatchResizeShortestEdge((shortest_side,), self.cfg.INPUT.MAX_SIZE_TEST, self.cfg.INPUT.MIN_SIZE_TRAIN_SAMPLING) crop_augs.append(entity_resize) # augs = T.AugmentationList(augs) crop_augs = T.AugmentationList(crop_augs) return augs, crop_augs def __call__(self, original_image): """ Args: original_image (np.ndarray): an image of shape (H, W, C) (in BGR order). Returns: predictions (dict): the output of the model for one image only. See :doc:`/tutorials/models` for details about the format. """ with torch.no_grad(): # https://github.com/sphinx-doc/sphinx/issues/4258 # Apply pre-processing to image. if self.input_format == "RGB": # whether the model expects BGR inputs or RGB original_image = original_image[:, :, ::-1] # build cropformer augmentations augs, crop_augs = self.generate_img_augs() height, width = original_image.shape[:2] aug_input_ori = T.AugInput(copy.deepcopy(original_image)) aug_input_ori, _ = T.apply_transform_gens(augs, aug_input_ori) image_ori = aug_input_ori.image image_ori = torch.as_tensor(image_ori.astype("float32").transpose(2, 0, 1)) aug_input_crop = T.AugInput(copy.deepcopy(original_image)) transforms_crop = crop_augs(aug_input_crop) image_crop = aug_input_crop.image assert len(image_crop.shape)==4, "the image shape must be [N, H, W, C]" image_crop = torch.as_tensor(image_crop.astype("float32").transpose(0, 3, 1, 2)) for transform_type in transforms_crop: if isinstance(transform_type, EntityCropTransform): crop_axises = transform_type.crop_axises crop_indexes = transform_type.crop_indexes inputs = {"image": image_ori, "height": height, "width": width, "image_crop": image_crop, "crop_region": crop_axises, "crop_indexes": crop_indexes } # pdb.set_trace() predictions = self.model([inputs])[0] return predictions class AsyncPredictor: """ A predictor that runs the model asynchronously, possibly on >1 GPUs. Because rendering the visualization takes considerably amount of time, this helps improve throughput a little bit when rendering videos. """ class _StopToken: pass class _PredictWorker(mp.Process): def __init__(self, cfg, task_queue, result_queue): self.cfg = cfg self.task_queue = task_queue self.result_queue = result_queue super().__init__() def run(self): predictor = CropFormerPredictor(self.cfg) while True: task = self.task_queue.get() if isinstance(task, AsyncPredictor._StopToken): break idx, data = task result = predictor(data) self.result_queue.put((idx, result)) def __init__(self, cfg, num_gpus: int = 1): """ Args: cfg (CfgNode): num_gpus (int): if 0, will run on CPU """ num_workers = max(num_gpus, 1) self.task_queue = mp.Queue(maxsize=num_workers * 3) self.result_queue = mp.Queue(maxsize=num_workers * 3) self.procs = [] for gpuid in range(max(num_gpus, 1)): cfg = cfg.clone() cfg.defrost() cfg.MODEL.DEVICE = "cuda:{}".format(gpuid) if num_gpus > 0 else "cpu" self.procs.append( AsyncPredictor._PredictWorker(cfg, self.task_queue, self.result_queue) ) self.put_idx = 0 self.get_idx = 0 self.result_rank = [] self.result_data = [] for p in self.procs: p.start() atexit.register(self.shutdown) def put(self, image): self.put_idx += 1 self.task_queue.put((self.put_idx, image)) def get(self): self.get_idx += 1 # the index needed for this request if len(self.result_rank) and self.result_rank[0] == self.get_idx: res = self.result_data[0] del self.result_data[0], self.result_rank[0] return res while True: # make sure the results are returned in the correct order idx, res = self.result_queue.get() if idx == self.get_idx: return res insert = bisect.bisect(self.result_rank, idx) self.result_rank.insert(insert, idx) self.result_data.insert(insert, res) def __len__(self): return self.put_idx - self.get_idx def __call__(self, image): self.put(image) return self.get() def shutdown(self): for _ in self.procs: self.task_queue.put(AsyncPredictor._StopToken()) @property def default_buffer_size(self): return len(self.procs) * 5