Spaces:
Runtime error
Runtime error
import torch | |
import torch as th | |
import torch.nn as nn | |
import torch.nn.functional as F | |
from ldm.modules.diffusionmodules.util import ( | |
checkpoint, | |
conv_nd, | |
linear, | |
zero_module, | |
timestep_embedding, | |
) | |
from ldm.modules.diffusionmodules.openaimodel import ( | |
UNetModel, | |
TimestepBlock, | |
TimestepEmbedSequential, | |
ResBlock, | |
Downsample, | |
AttentionBlock | |
) | |
from ldm.modules.attention import SpatialTransformer | |
from ldm.util import exists | |
def layer_norm(tensor, drop=0.5, eps=1e-6): | |
mean = tensor.mean(dim=(1,2)).squeeze() | |
std = tensor.std(dim=(1,2)).squeeze() | |
var = tensor.var(dim=(1,2)) | |
tensor = (tensor-mean) / (var+eps) ** 0.5 | |
neg = (tensor * (tensor < 0).float()).abs().sum() / (tensor<0).float().sum() | |
pos = (tensor * (tensor > 0).float()).abs().sum() / (tensor>0).float().sum() | |
class LocalTimestepEmbedSequential(nn.Sequential, TimestepBlock): | |
def forward(self, x, emb, context=None, local_control=None, content_control=None, color_control=None, content_w=1.0, color_w=1.0): | |
for layer in self: | |
if isinstance(layer, TimestepBlock): | |
x = layer(x, emb) | |
elif isinstance(layer, SpatialTransformer): | |
x = layer(x, context, content_control, color_control, content_w, color_w) | |
elif isinstance(layer, LocalResBlock): | |
x = layer(x, emb, local_control) | |
else: | |
x = layer(x) | |
return x | |
class FDN(nn.Module): | |
def __init__(self, norm_nc, label_nc): | |
super().__init__() | |
ks = 3 | |
pw = ks // 2 | |
self.param_free_norm = nn.GroupNorm(32, norm_nc, affine=False) | |
self.conv_gamma = nn.Conv2d(label_nc, norm_nc, kernel_size=ks, padding=pw) | |
self.conv_beta = nn.Conv2d(label_nc, norm_nc, kernel_size=ks, padding=pw) | |
def forward(self, x, local_features): | |
normalized = self.param_free_norm(x) | |
assert local_features.size()[2:] == x.size()[2:] | |
gamma = self.conv_gamma(local_features) | |
beta = self.conv_beta(local_features) | |
out = normalized * (1 + gamma) + beta | |
return out | |
class LocalResBlock(nn.Module): | |
def __init__( | |
self, | |
channels, | |
emb_channels, | |
dropout, | |
out_channels=None, | |
dims=2, | |
use_checkpoint=False, | |
inject_channels=None, | |
): | |
super().__init__() | |
self.channels = channels | |
self.emb_channels = emb_channels | |
self.dropout = dropout | |
self.out_channels = out_channels or channels | |
self.use_checkpoint = use_checkpoint | |
self.norm_in = FDN(channels, inject_channels) | |
self.norm_out = FDN(self.out_channels, inject_channels) | |
self.in_layers = nn.Sequential( | |
nn.Identity(), | |
nn.SiLU(), | |
conv_nd(dims, channels, self.out_channels, 3, padding=1), | |
) | |
self.emb_layers = nn.Sequential( | |
nn.SiLU(), | |
linear( | |
emb_channels, | |
self.out_channels, | |
), | |
) | |
self.out_layers = nn.Sequential( | |
nn.Identity(), | |
nn.SiLU(), | |
nn.Dropout(p=dropout), | |
zero_module( | |
conv_nd(dims, self.out_channels, self.out_channels, 3, padding=1) | |
), | |
) | |
if self.out_channels == channels: | |
self.skip_connection = nn.Identity() | |
else: | |
self.skip_connection = conv_nd(dims, channels, self.out_channels, 1) | |
def forward(self, x, emb, local_conditions): | |
return checkpoint( | |
self._forward, (x, emb, local_conditions), self.parameters(), self.use_checkpoint | |
) | |
def _forward(self, x, emb, local_conditions): | |
local_conditions = F.interpolate(local_conditions, x.shape[-2:], mode="bilinear") | |
h = self.norm_in(x, local_conditions) | |
h = self.in_layers(h) | |
emb_out = self.emb_layers(emb).type(h.dtype) | |
while len(emb_out.shape) < len(h.shape): | |
emb_out = emb_out[..., None] | |
h = h + emb_out | |
h = self.norm_out(h, local_conditions) | |
h = self.out_layers(h) | |
return self.skip_connection(x) + h | |
class LocalAdapter(nn.Module): | |
def __init__( | |
self, | |
in_channels, | |
model_channels, | |
local_channels, | |
inject_channels, | |
inject_layers, | |
query_channels, | |
query_layers, | |
query_scales, | |
num_res_blocks, | |
attention_resolutions, | |
dropout=0, | |
channel_mult=(1, 2, 4, 8), | |
conv_resample=True, | |
dims=2, | |
use_checkpoint=False, | |
use_fp16=False, | |
num_heads=-1, | |
num_head_channels=-1, | |
num_heads_upsample=-1, | |
use_scale_shift_norm=False, | |
resblock_updown=False, | |
use_new_attention_order=False, | |
use_spatial_transformer=False, # custom transformer support | |
transformer_depth=1, # custom transformer support | |
context_dim=None, # custom transformer support | |
n_embed=None, # custom support for prediction of discrete ids into codebook of first stage vq model | |
legacy=True, | |
disable_self_attentions=None, | |
num_attention_blocks=None, | |
disable_middle_self_attn=False, | |
use_linear_in_transformer=False, | |
): | |
super().__init__() | |
if use_spatial_transformer: | |
assert context_dim is not None, 'Fool!! You forgot to include the dimension of your cross-attention conditioning...' | |
if context_dim is not None: | |
assert use_spatial_transformer, 'Fool!! You forgot to use the spatial transformer for your cross-attention conditioning...' | |
from omegaconf.listconfig import ListConfig | |
if type(context_dim) == ListConfig: | |
context_dim = list(context_dim) | |
if num_heads_upsample == -1: | |
num_heads_upsample = num_heads | |
if num_heads == -1: | |
assert num_head_channels != -1, 'Either num_heads or num_head_channels has to be set' | |
if num_head_channels == -1: | |
assert num_heads != -1, 'Either num_heads or num_head_channels has to be set' | |
self.dims = dims | |
self.in_channels = in_channels | |
self.model_channels = model_channels | |
self.inject_layers = inject_layers | |
if isinstance(num_res_blocks, int): | |
self.num_res_blocks = len(channel_mult) * [num_res_blocks] | |
else: | |
if len(num_res_blocks) != len(channel_mult): | |
raise ValueError("provide num_res_blocks either as an int (globally constant) or " | |
"as a list/tuple (per-level) with the same length as channel_mult") | |
self.num_res_blocks = num_res_blocks | |
if disable_self_attentions is not None: | |
# should be a list of booleans, indicating whether to disable self-attention in TransformerBlocks or not | |
assert len(disable_self_attentions) == len(channel_mult) | |
if num_attention_blocks is not None: | |
assert len(num_attention_blocks) == len(self.num_res_blocks) | |
assert all(map(lambda i: self.num_res_blocks[i] >= num_attention_blocks[i], range(len(num_attention_blocks)))) | |
print(f"Constructor of UNetModel received num_attention_blocks={num_attention_blocks}. " | |
f"This option has LESS priority than attention_resolutions {attention_resolutions}, " | |
f"i.e., in cases where num_attention_blocks[i] > 0 but 2**i not in attention_resolutions, " | |
f"attention will still not be set.") | |
self.attention_resolutions = attention_resolutions | |
self.dropout = dropout | |
self.channel_mult = channel_mult | |
self.conv_resample = conv_resample | |
self.use_checkpoint = use_checkpoint | |
self.dtype = th.float16 if use_fp16 else th.float32 | |
self.num_heads = num_heads | |
self.num_head_channels = num_head_channels | |
self.num_heads_upsample = num_heads_upsample | |
self.predict_codebook_ids = n_embed is not None | |
self.query_channels = query_channels | |
self.query_layers = query_layers | |
self.query_scales = query_scales | |
visual_projs = [] | |
for query_channel, inject_channel in zip(query_channels, inject_channels): | |
layer_proj = zero_module(linear(query_channel, inject_channel)) | |
visual_projs.append(layer_proj) | |
self.visual_projs = nn.ModuleList(visual_projs) | |
time_embed_dim = model_channels * 4 | |
self.time_embed = nn.Sequential( | |
linear(model_channels, time_embed_dim), | |
nn.SiLU(), | |
linear(time_embed_dim, time_embed_dim), | |
) | |
self.input_blocks = nn.ModuleList( | |
[ | |
LocalTimestepEmbedSequential( | |
conv_nd(dims, in_channels, model_channels, 3, padding=1) | |
) | |
] | |
) | |
self.zero_convs = nn.ModuleList([self.make_zero_conv(model_channels)]) | |
self._feature_size = model_channels | |
input_block_chans = [model_channels] | |
ch = model_channels | |
ds = 1 | |
for level, mult in enumerate(channel_mult): | |
for nr in range(self.num_res_blocks[level]): | |
if (1 + 3*level + nr) in self.inject_layers: | |
layers = [ | |
LocalResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
out_channels=mult * model_channels, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
inject_channels=inject_channels[level], | |
) | |
] | |
else: | |
layers = [ | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
out_channels=mult * model_channels, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
) | |
] | |
ch = mult * model_channels | |
if ds in attention_resolutions: | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
if legacy: | |
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels | |
if exists(disable_self_attentions): | |
disabled_sa = disable_self_attentions[level] | |
else: | |
disabled_sa = False | |
if not exists(num_attention_blocks) or nr < num_attention_blocks[level]: | |
layers.append( | |
AttentionBlock( | |
ch, | |
use_checkpoint=use_checkpoint, | |
num_heads=num_heads, | |
num_head_channels=dim_head, | |
use_new_attention_order=use_new_attention_order, | |
) if not use_spatial_transformer else SpatialTransformer( | |
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, | |
disable_self_attn=disabled_sa, use_linear=use_linear_in_transformer, | |
use_checkpoint=use_checkpoint | |
) | |
) | |
self.input_blocks.append(LocalTimestepEmbedSequential(*layers)) | |
self.zero_convs.append(self.make_zero_conv(ch)) | |
self._feature_size += ch | |
input_block_chans.append(ch) | |
if level != len(channel_mult) - 1: | |
out_ch = ch | |
self.input_blocks.append( | |
LocalTimestepEmbedSequential( | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
out_channels=out_ch, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
down=True, | |
) | |
if resblock_updown | |
else Downsample( | |
ch, conv_resample, dims=dims, out_channels=out_ch | |
) | |
) | |
) | |
ch = out_ch | |
input_block_chans.append(ch) | |
self.zero_convs.append(self.make_zero_conv(ch)) | |
ds *= 2 | |
self._feature_size += ch | |
if num_head_channels == -1: | |
dim_head = ch // num_heads | |
else: | |
num_heads = ch // num_head_channels | |
dim_head = num_head_channels | |
if legacy: | |
dim_head = ch // num_heads if use_spatial_transformer else num_head_channels | |
self.middle_block = LocalTimestepEmbedSequential( | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
), | |
AttentionBlock( | |
ch, | |
use_checkpoint=use_checkpoint, | |
num_heads=num_heads, | |
num_head_channels=dim_head, | |
use_new_attention_order=use_new_attention_order, | |
) if not use_spatial_transformer else SpatialTransformer( | |
ch, num_heads, dim_head, depth=transformer_depth, context_dim=context_dim, | |
disable_self_attn=disable_middle_self_attn, use_linear=use_linear_in_transformer, | |
use_checkpoint=use_checkpoint | |
), | |
ResBlock( | |
ch, | |
time_embed_dim, | |
dropout, | |
dims=dims, | |
use_checkpoint=use_checkpoint, | |
use_scale_shift_norm=use_scale_shift_norm, | |
), | |
) | |
self.middle_block_out = self.make_zero_conv(ch) | |
self._feature_size += ch | |
def make_zero_conv(self, channels): | |
return LocalTimestepEmbedSequential(zero_module(conv_nd(self.dims, channels, channels, 1, padding=0))) | |
def extract_local_features(self, q_former, text, local_conditions): | |
# extract local features | |
bs, chn, h, w = local_conditions.shape | |
n = chn // 3 | |
image_features_frozen, image_atts = q_former.forward_visual_encoder(local_conditions.view(bs * n, 3, h, w)) | |
bs_n, seq_len, v_chn = image_features_frozen[0].shape | |
# with pos embed | |
image_features_frozen = [q_former.crossattn_embeddings(image_feat) for image_feat in image_features_frozen] | |
# image_features_frozen: [bs * n, seq_len, c] | |
image_features_frozen = [image_feat.view(bs, n*seq_len, v_chn) for image_feat in image_features_frozen] | |
image_atts = [image_att.view(bs, -1) for image_att in image_atts] | |
local_embeddings = q_former.forward_qformer(text, image_features_frozen, image_atts) | |
# process qformer features | |
local_features = [] | |
for lvl, scale_factor, visual_proj in zip(self.query_layers, self.query_scales, self.visual_projs): | |
local_emb = local_embeddings[lvl] | |
_, seq_len, ndim = local_emb.shape | |
l = int(seq_len ** 0.5) | |
local_emb = F.interpolate(local_emb.transpose(1,2).view(bs, -1, l, l), None, scale_factor=scale_factor, mode="bilinear") | |
local_emb = visual_proj(local_emb.transpose(1,2).transpose(2,3).flatten(1,2)) | |
local_emb = local_emb.view(bs, int(l*scale_factor), int(l*scale_factor), -1).transpose(2,3).transpose(1,2) | |
local_features.append(local_emb) | |
return local_features | |
def forward(self, x, timesteps, context, local_features, **kwargs): | |
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) | |
emb = self.time_embed(t_emb) | |
outs = [] | |
h = x.type(self.dtype) | |
for layer_idx, (module, zero_conv) in enumerate(zip(self.input_blocks, self.zero_convs)): | |
if layer_idx in self.inject_layers: | |
h = module(h, emb, context, local_control=local_features[self.inject_layers.index(layer_idx)]) | |
else: | |
h = module(h, emb, context) | |
outs.append(zero_conv(h, emb, context)) | |
h = self.middle_block(h, emb, context) | |
outs.append(self.middle_block_out(h, emb, context)) | |
return outs | |
class LocalControlUNetModel(UNetModel): | |
def forward(self, x, timesteps=None, context=None, local_control=None, content_control=None, color_control=None, local_w=1.0, content_w=1.0, color_w=1.0, **kwargs): | |
hs = [] | |
with torch.no_grad(): | |
t_emb = timestep_embedding(timesteps, self.model_channels, repeat_only=False) | |
emb = self.time_embed(t_emb) | |
h = x.type(self.dtype) | |
for module in self.input_blocks: | |
h = module(h, emb, context, content_control=content_control, color_control=color_control, content_w=content_w, color_w=color_w) | |
hs.append(h) | |
h = self.middle_block(h, emb, context, content_control=content_control, color_control=color_control, content_w=content_w, color_w=color_w) | |
h += local_w * local_control.pop() | |
for module in self.output_blocks: | |
h = torch.cat([h, hs.pop() + local_w * local_control.pop()], dim=1) | |
h = module(h, emb, context, content_control=content_control, color_control=color_control, content_w=content_w, color_w=color_w) | |
h = h.type(x.dtype) | |
return self.out(h) | |