nowsyn's picture
upload codes
54a7220
raw
history blame
30.9 kB
# Copyright (c) Facebook, Inc. and its affiliates.
from typing import Tuple
import torch
from torch import nn
from torch.nn import functional as F
import pdb
import numpy as np
import cv2
import os
from detectron2.config import configurable
from detectron2.data import MetadataCatalog
from detectron2.modeling import META_ARCH_REGISTRY, build_backbone, build_sem_seg_head
from detectron2.modeling.backbone import Backbone
from detectron2.modeling.postprocessing import sem_seg_postprocess
from detectron2.structures import Boxes, ImageList, Instances, BitMasks
from detectron2.utils.memory import retry_if_cuda_oom
from detectron2.data.datasets.builtin_meta import COCO_CATEGORIES
from .modeling.criterion import SetCriterion
from .modeling.matcher import HungarianMatcher
from .modeling.criterion_view import ViewSetCriterion
from .modeling.matcher_view import ViewHungarianMatcher
import pdb
import copy
@META_ARCH_REGISTRY.register()
class CropFormer(nn.Module):
"""
Main class for mask classification semantic segmentation architectures.
"""
@configurable
def __init__(
self,
*,
cfg,
backbone: Backbone,
sem_seg_head: nn.Module,
criterion_2d: nn.Module,
criterion_3d: nn.Module,
num_queries: int,
object_mask_threshold: float,
overlap_threshold: float,
metadata,
size_divisibility: int,
sem_seg_postprocess_before_inference: bool,
pixel_mean: Tuple[float],
pixel_std: Tuple[float],
# inference
semantic_on: bool,
panoptic_on: bool,
instance_on: bool,
test_topk_per_image: int,
):
"""
Args:
backbone: a backbone module, must follow detectron2's backbone interface
sem_seg_head: a module that predicts semantic segmentation from backbone features
criterion: a module that defines the loss
num_queries: int, number of queries
object_mask_threshold: float, threshold to filter query based on classification score
for panoptic segmentation inference
overlap_threshold: overlap threshold used in general inference for panoptic segmentation
metadata: dataset meta, get `thing` and `stuff` category names for panoptic
segmentation inference
size_divisibility: Some backbones require the input height and width to be divisible by a
specific integer. We can use this to override such requirement.
sem_seg_postprocess_before_inference: whether to resize the prediction back
to original input size before semantic segmentation inference or after.
For high-resolution dataset like Mapillary, resizing predictions before
inference will cause OOM error.
pixel_mean, pixel_std: list or tuple with #channels element, representing
the per-channel mean and std to be used to normalize the input image
semantic_on: bool, whether to output semantic segmentation prediction
instance_on: bool, whether to output instance segmentation prediction
panoptic_on: bool, whether to output panoptic segmentation prediction
test_topk_per_image: int, instance segmentation parameter, keep topk instances per image
"""
super().__init__()
self.cfg = cfg
self.backbone = backbone
self.sem_seg_head = sem_seg_head
self.criterion_2d = criterion_2d
self.criterion_3d = criterion_3d
## colors
self.colors = [info["color"] for info in COCO_CATEGORIES]
self.num_queries = num_queries
self.overlap_threshold = overlap_threshold
self.object_mask_threshold = object_mask_threshold
self.metadata = metadata
if size_divisibility < 0:
# use backbone size_divisibility if not set
size_divisibility = self.backbone.size_divisibility
self.size_divisibility = size_divisibility
self.sem_seg_postprocess_before_inference = sem_seg_postprocess_before_inference
self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False)
self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False)
## colors
self.colors = [info["color"] for info in COCO_CATEGORIES]
# additional args
self.semantic_on = semantic_on
self.instance_on = instance_on
self.panoptic_on = panoptic_on
self.test_topk_per_image = test_topk_per_image
if not self.semantic_on:
assert self.sem_seg_postprocess_before_inference
@classmethod
def from_config(cls, cfg):
backbone = build_backbone(cfg)
sem_seg_head = build_sem_seg_head(cfg, backbone.output_shape())
# Loss parameters:
deep_supervision = cfg.MODEL.MASK_FORMER.DEEP_SUPERVISION
no_object_weight = cfg.MODEL.MASK_FORMER.NO_OBJECT_WEIGHT
# loss weights
class_weight = cfg.MODEL.MASK_FORMER.CLASS_WEIGHT
dice_weight = cfg.MODEL.MASK_FORMER.DICE_WEIGHT
mask_weight = cfg.MODEL.MASK_FORMER.MASK_WEIGHT
# building criterion
matcher_2d = HungarianMatcher(
cost_class=class_weight,
cost_mask=mask_weight,
cost_dice=dice_weight,
num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS,
)
matcher_3d = ViewHungarianMatcher(
cost_class=class_weight,
cost_mask=mask_weight,
cost_dice=dice_weight,
num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS,
)
weight_dict = {"loss_ce": class_weight, "loss_mask": mask_weight, "loss_dice": dice_weight}
if deep_supervision:
dec_layers = cfg.MODEL.MASK_FORMER.DEC_LAYERS
aux_weight_dict = {}
for i in range(dec_layers - 1):
aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()})
weight_dict.update(aux_weight_dict)
losses = ["labels", "masks"]
criterion_2d = SetCriterion(
sem_seg_head.num_classes,
matcher=matcher_2d,
weight_dict=weight_dict,
eos_coef=no_object_weight,
losses=losses,
num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS,
oversample_ratio=cfg.MODEL.MASK_FORMER.OVERSAMPLE_RATIO,
importance_sample_ratio=cfg.MODEL.MASK_FORMER.IMPORTANCE_SAMPLE_RATIO,
)
criterion_3d = ViewSetCriterion(
sem_seg_head.num_classes,
matcher=matcher_3d,
weight_dict=weight_dict,
eos_coef=no_object_weight,
losses=losses,
num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS,
oversample_ratio=cfg.MODEL.MASK_FORMER.OVERSAMPLE_RATIO,
importance_sample_ratio=cfg.MODEL.MASK_FORMER.IMPORTANCE_SAMPLE_RATIO,
)
return {
"cfg": cfg,
"backbone": backbone,
"sem_seg_head": sem_seg_head,
"criterion_2d": criterion_2d,
"criterion_3d": criterion_3d,
"num_queries": cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES,
"object_mask_threshold": cfg.MODEL.MASK_FORMER.TEST.OBJECT_MASK_THRESHOLD,
"overlap_threshold": cfg.MODEL.MASK_FORMER.TEST.OVERLAP_THRESHOLD,
"metadata": MetadataCatalog.get(cfg.DATASETS.TRAIN[0]),
"size_divisibility": cfg.MODEL.MASK_FORMER.SIZE_DIVISIBILITY,
"sem_seg_postprocess_before_inference": (
cfg.MODEL.MASK_FORMER.TEST.SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE
or cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON
or cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON
),
"pixel_mean": cfg.MODEL.PIXEL_MEAN,
"pixel_std": cfg.MODEL.PIXEL_STD,
# inference
"semantic_on": cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON,
"instance_on": cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON,
"panoptic_on": cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON,
"test_topk_per_image": cfg.TEST.DETECTIONS_PER_IMAGE,
}
@property
def device(self):
return self.pixel_mean.device
def forward(self, batched_inputs):
"""
Args:
batched_inputs: a list, batched outputs of :class:`DatasetMapper`.
Each item in the list contains the inputs for one image.
For now, each item in the list is a dict that contains:
* "image": Tensor, image in (C, H, W) format.
* "instances": per-region ground truth
* Other information that's included in the original dicts, such as:
"height", "width" (int): the output resolution of the model (may be different
from input resolution), used in inference.
Returns:
list[dict]:
each dict has the results for one image. The dict contains the following keys:
* "sem_seg":
A Tensor that represents the
per-pixel segmentation prediced by the head.
The prediction has shape KxHxW that represents the logits of
each class for each pixel.
* "panoptic_seg":
A tuple that represent panoptic output
panoptic_seg (Tensor): of shape (height, width) where the values are ids for each segment.
segments_info (list[dict]): Describe each segment in `panoptic_seg`.
Each dict contains keys "id", "category_id", "isthing".
"""
## make new images
batched_inputs_new = []
for batched_input in batched_inputs:
ori_infos = {"height": batched_input["height"],
"width": batched_input["width"],
"image": batched_input["image"],
# "file_name": batched_input["file_name"],
}
if "instances" in batched_input.keys():
ori_instances = batched_input["instances"]
ori_instances.original_indices = torch.arange(0, len(ori_instances)).long()
ori_infos["instances"] = ori_instances
batched_inputs_new.append(ori_infos)
## cropped patches
# pdb.set_trace()
crop_region = batched_input["crop_region"]
crop_images = batched_input["image_crop"]
crop_o_width = int(crop_region[0][2]-crop_region[0][0])
crop_o_height = int(crop_region[0][3]-crop_region[0][1])
if "instances_crop" in batched_input.keys():
crop_instances = batched_input["instances_crop"]
else:
crop_instances = None
for crop_index, crop_image in enumerate(crop_images):
crop_infos = {"height": crop_o_height, "width": crop_o_width, "image": crop_image}
if not crop_instances == None:
crop_instance = crop_instances[crop_index]
crop_instance.original_indices = torch.arange(0, len(crop_instance)).long()
crop_infos["instances"] = crop_instance
batched_inputs_new.append(crop_infos)
images = [x["image"].to(self.device) for x in batched_inputs_new]
## +1 means
num_views = self.cfg.ENTITY.CROP_SAMPLE_NUM_TRAIN+1 if self.training else self.cfg.ENTITY.CROP_SAMPLE_NUM_TEST+1
for i in range(len(images)):
if i%num_views==0:
continue
_, c_h, c_w = images[i].shape
if "instances" in batched_inputs_new[i].keys():
batched_inputs_new[i]["instances"]._image_size = (c_h, c_w)
images = [(x - self.pixel_mean) / self.pixel_std for x in images]
images = ImageList.from_tensors(images, self.size_divisibility)
features = self.backbone(images.tensor)
outputs_2d, outputs_3d = self.sem_seg_head(features)
if self.training:
if self.cfg.ENTITY.ENABLE:
for i in range(len(batched_inputs_new)):
batched_inputs_new[i]["instances"].gt_classes[:] = 0
if "instances" in batched_inputs[0]:
gt_instances = [x["instances"].to(self.device) for x in batched_inputs_new]
targets_2d = self.prepare_targets_2d(copy.deepcopy(gt_instances), copy.deepcopy(images))
targets_3d = self.prepare_targets_3d(copy.deepcopy(gt_instances), copy.deepcopy(images), num_views)
else:
targets = None
# bipartite matching-based loss
losses = {}
losses_2d = self.criterion_2d(outputs_2d, targets_2d)
losses_3d = self.criterion_3d(outputs_3d, targets_3d)
for k in list(losses_2d.keys()):
if k in self.criterion_2d.weight_dict:
losses[k+"_2d"] = losses_2d[k] * self.criterion_2d.weight_dict[k] * 0.5
else:
# remove this loss if not specified in `weight_dict`
losses_2d.pop(k)
for k in list(losses_3d.keys()):
if k in self.criterion_3d.weight_dict:
losses[k+"_3d"] = losses_3d[k] * self.criterion_3d.weight_dict[k]
else:
# remove this loss if not specified in `weight_dict`
losses_3d.pop(k)
return losses
else:
mask_cls_results_3d = outputs_3d["pred_logits"][0] ## 100,2
mask_pred_results_3d = outputs_3d["pred_masks"][0] ## 100,5,200, 304
mask_cls_results_2d = outputs_2d["pred_logits"]
mask_pred_results_2d = outputs_2d["pred_masks"]
# upsample masks
mask_pred_results_3d = retry_if_cuda_oom(F.interpolate)(
mask_pred_results_3d,
size=(images.tensor.shape[-2], images.tensor.shape[-1]),
mode="bilinear",
align_corners=False,
)
mask_pred_results_2d = F.interpolate(
mask_pred_results_2d,
size=(images.tensor.shape[-2], images.tensor.shape[-1]),
mode="bilinear",
align_corners=False,
)
del outputs_2d, outputs_3d
crop_regions = batched_input["crop_region"][:num_views-1]
processed_results = retry_if_cuda_oom(self.inference_whole_views)(
mask_cls_results_3d,
mask_pred_results_3d,
mask_cls_results_2d,
mask_pred_results_2d,
batched_inputs_new,
images.image_sizes,
crop_regions)
# processed_results = retry_if_cuda_oom(self.instance_inference_nonoverlap)(
# mask_cls_results_2d[0],
# mask_pred_results_2d[0],
# batched_inputs_new[0],
# images.image_sizes[0])
return [{"instances": processed_results}]
def prepare_targets_2d(self, targets, images):
h_pad, w_pad = images.tensor.shape[-2:]
new_targets = []
for targets_per_image in targets:
gt_masks = targets_per_image.gt_masks.tensor
gt_valid = targets_per_image.gt_boxes_valid
padded_masks = torch.zeros((gt_masks.shape[0], h_pad, w_pad), dtype=gt_masks.dtype, device=gt_masks.device)
padded_masks[:, : gt_masks.shape[1], : gt_masks.shape[2]] = gt_masks
valid_index = torch.nonzero(gt_valid).flatten()
new_targets.append(
{
"labels": targets_per_image.gt_classes[valid_index],
"masks": padded_masks[valid_index],
}
)
return new_targets
def prepare_targets_3d(self, targets_ori, images, num_views):
T = num_views
B = int(len(targets_ori) / T)
h_pad, w_pad = images.tensor.shape[-2:]
## reshape to new targets
new_targets = []
for count, target in enumerate(targets_ori):
b_index, t_index = int(count // T), int(count % T)
if t_index == 0:
new_targets.append([target])
else:
new_targets[b_index].append(target)
gt_instances = []
for count, targets in enumerate(new_targets):
_num_instance = len(targets[0])
mask_shape = [_num_instance, T, h_pad, w_pad]
gt_masks_per_view = torch.zeros(mask_shape, dtype=torch.bool, device=self.device)
for v_i, targets_per_view in enumerate(targets):
assert torch.all(targets[0].original_indices == targets_per_view.original_indices)
gt_ids_per_view = []
gt_ids_per_valid = []
gt_ids_categories = []
## view first, then entities
for v_i, targets_per_view in enumerate(targets):
targets_per_view = targets_per_view.to(self.device)
h, w = targets_per_view.image_size
for i_i, (instance_mask, instance_valid) in enumerate(zip(targets_per_view.gt_masks.tensor, targets_per_view.gt_boxes_valid)):
if instance_valid == 1:
gt_masks_per_view[i_i, v_i, :h, :w] = instance_mask
gt_ids_per_valid.append(targets_per_view.gt_boxes_valid[None,:])
gt_ids_per_view.append(targets_per_view.original_indices[None,:])
gt_ids_categories.append(targets_per_view.gt_classes[None, :])
## (num_instances, num_views)
gt_ids_per_valid = torch.cat(gt_ids_per_valid, dim=0).permute((1,0))
gt_ids_per_view = torch.cat(gt_ids_per_view, dim=0).permute((1,0))
gt_ids_categories = torch.cat(gt_ids_categories, dim=0).permute((1,0))
gt_ids_per_view[gt_ids_per_valid == 0] = -1
valid_idx = (gt_ids_per_view != 1).any(dim=-1)
## categoreis
gt_classes_per_group = gt_ids_categories[:,0] ## N
gt_ids_per_group = gt_ids_per_view ## N, num_views
gt_masks_per_group = gt_masks_per_view.float() ## N, num_views, H, W
##
gt_instances.append({"labels": gt_classes_per_group,
"ids": gt_ids_per_group,
"masks": gt_masks_per_group})
return gt_instances
def semantic_inference(self, mask_cls, mask_pred):
mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1]
mask_pred = mask_pred.sigmoid()
semseg = torch.einsum("qc,qhw->chw", mask_cls, mask_pred)
return semseg
def panoptic_inference(self, mask_cls, mask_pred):
scores, labels = F.softmax(mask_cls, dim=-1).max(-1)
mask_pred = mask_pred.sigmoid()
keep = labels.ne(self.sem_seg_head.num_classes) & (scores > self.object_mask_threshold)
cur_scores = scores[keep]
cur_classes = labels[keep]
cur_masks = mask_pred[keep]
cur_mask_cls = mask_cls[keep]
cur_mask_cls = cur_mask_cls[:, :-1]
cur_prob_masks = cur_scores.view(-1, 1, 1) * cur_masks
h, w = cur_masks.shape[-2:]
panoptic_seg = torch.zeros((h, w), dtype=torch.int32, device=cur_masks.device)
segments_info = []
current_segment_id = 0
if cur_masks.shape[0] == 0:
# We didn't detect any mask :(
return panoptic_seg, segments_info
else:
# take argmax
cur_mask_ids = cur_prob_masks.argmax(0)
stuff_memory_list = {}
for k in range(cur_classes.shape[0]):
pred_class = cur_classes[k].item()
isthing = pred_class in self.metadata.thing_dataset_id_to_contiguous_id.values()
mask_area = (cur_mask_ids == k).sum().item()
original_area = (cur_masks[k] >= 0.5).sum().item()
mask = (cur_mask_ids == k) & (cur_masks[k] >= 0.5)
if mask_area > 0 and original_area > 0 and mask.sum().item() > 0:
if mask_area / original_area < self.overlap_threshold:
continue
# merge stuff regions
if not isthing:
if int(pred_class) in stuff_memory_list.keys():
panoptic_seg[mask] = stuff_memory_list[int(pred_class)]
continue
else:
stuff_memory_list[int(pred_class)] = current_segment_id + 1
current_segment_id += 1
panoptic_seg[mask] = current_segment_id
segments_info.append(
{
"id": current_segment_id,
"isthing": bool(isthing),
"category_id": int(pred_class),
}
)
return panoptic_seg, segments_info
def instance_inference_nonoverlap(self, mask_cls, mask_pred):
# mask_pred is already processed to have the same shape as original input
image_size = mask_pred.shape[-2:]
# [Q, K]
scores = F.softmax(mask_cls, dim=-1)[:, :-1]
labels = torch.arange(self.sem_seg_head.num_classes, device=self.device).unsqueeze(0).repeat(self.num_queries, 1).flatten(0, 1)
# scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.num_queries, sorted=False)
scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.test_topk_per_image, sorted=False)
labels_per_image = labels[topk_indices]
topk_indices = topk_indices // self.sem_seg_head.num_classes
# mask_pred = mask_pred.unsqueeze(1).repeat(1, self.sem_seg_head.num_classes, 1).flatten(0, 1)
mask_pred = mask_pred[topk_indices]
###### ranks
pred_masks = (mask_pred>0).float()
pred_masks_logits = mask_pred.sigmoid()
pred_scores = scores_per_image
_, m_H, m_W = pred_masks.shape
mask_id = torch.zeros((m_H, m_W), dtype=torch.int).to(pred_masks.device)
sorted_scores, ranks = torch.sort(pred_scores)
ranks = ranks + 1
for index in ranks:
mask_id[(pred_masks[index-1]==1)] = int(index)
# re-generate mask
new_scores = []
new_masks = []
new_masks_logits = []
entity_nums = len(ranks)
for ii in range(entity_nums):
index = int(ranks[entity_nums-ii-1])
score = sorted_scores[entity_nums-ii-1]
new_scores.append(score)
new_masks.append((mask_id==index).float())
new_masks_logits.append(pred_masks_logits[index-1])
new_scores = torch.stack(new_scores)
new_masks = torch.stack(new_masks)
new_masks_logits = torch.stack(new_masks_logits)
result = Instances(image_size)
# mask (before sigmoid)
result.pred_masks = new_masks
result.pred_boxes = Boxes(torch.zeros(new_masks.size(0), 4))
# Uncomment the following to get boxes from masks (this is slow)
# calculate average mask prob
mask_scores_per_image = (new_masks_logits.sigmoid().flatten(1) * result.pred_masks.flatten(1)).sum(1) / (result.pred_masks.flatten(1).sum(1) + 1e-6)
result.scores = new_scores * mask_scores_per_image
result.pred_classes = labels_per_image
return result
def instance_inference(self, mask_cls, mask_pred):
# mask_pred is already processed to have the same shape as original input
image_size = mask_pred.shape[-2:]
# [Q, K]
scores = F.softmax(mask_cls, dim=-1)[:, :-1]
labels = torch.arange(self.sem_seg_head.num_classes, device=self.device).unsqueeze(0).repeat(self.num_queries, 1).flatten(0, 1)
# scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.num_queries, sorted=False)
scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.test_topk_per_image, sorted=False)
labels_per_image = labels[topk_indices]
topk_indices = topk_indices // self.sem_seg_head.num_classes
# mask_pred = mask_pred.unsqueeze(1).repeat(1, self.sem_seg_head.num_classes, 1).flatten(0, 1)
mask_pred = mask_pred[topk_indices]
# if this is panoptic segmentation, we only keep the "thing" classes
if self.panoptic_on:
keep = torch.zeros_like(scores_per_image).bool()
for i, lab in enumerate(labels_per_image):
keep[i] = lab in self.metadata.thing_dataset_id_to_contiguous_id.values()
scores_per_image = scores_per_image[keep]
labels_per_image = labels_per_image[keep]
mask_pred = mask_pred[keep]
result = Instances(image_size)
# mask (before sigmoid)
result.pred_masks = (mask_pred > 0).float()
result.pred_boxes = Boxes(torch.zeros(mask_pred.size(0), 4))
# Uncomment the following to get boxes from masks (this is slow)
# result.pred_boxes = BitMasks(mask_pred > 0).get_bounding_boxes()
# calculate average mask prob
mask_scores_per_image = (mask_pred.sigmoid().flatten(1) * result.pred_masks.flatten(1)).sum(1) / (result.pred_masks.flatten(1).sum(1) + 1e-6)
# pdb.set_trace()
result.scores = scores_per_image * mask_scores_per_image
result.pred_classes = labels_per_image
return result
def inference_whole_views(self, pred_cls, pred_masks, pred_cls_2d, pred_masks_2d, batched_inputs, image_sizes, crop_regions):
## pred_masks: [100, 5, 800, 1216]
## pred_masks_2d: [5, 100, 800, 1216]
scores = F.softmax(pred_cls, dim=-1)[:,:-1] # 100,1
scores_2d = F.softmax(pred_cls_2d, dim=-1)[:, :, :-1] # 5, 100, 1
# scores = (scores+scores_2d[0])/2
labels = torch.arange(self.sem_seg_head.num_classes, device=self.device).unsqueeze(0).repeat(self.num_queries, 1).flatten(0, 1)
### keep all the indices
scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.num_queries, sorted=False)
labels_per_image = labels[topk_indices]
# topk_indices = topk_indices // self.sem_seg_head.num_classes
topk_indices = torch.div(topk_indices, self.sem_seg_head.num_classes, rounding_mode="trunc")
pred_masks = pred_masks[topk_indices]
pred_masks = pred_masks.permute((1,0,2,3))
new_pred_masks = []
for view_index, (pred_masks_per_view, batched_input_per_view, image_size_per_view) in enumerate(zip(pred_masks, batched_inputs, image_sizes)):
O_H = batched_input_per_view["height"]
O_W = batched_input_per_view["width"]
SO_H, SO_W = image_size_per_view
pred_masks_per_view = pred_masks_per_view[..., : SO_H, :SO_W]
pred_masks_per_view = F.interpolate(pred_masks_per_view[None], size=(O_H, O_W), mode="bilinear", align_corners=False)
new_pred_masks.append(pred_masks_per_view[0].sigmoid())
## fuse the masks
full_image_masks = new_pred_masks[0]
## fuse crop image
fused_image_masks = torch.zeros_like(full_image_masks).float()
fused_image_masks_valid = torch.zeros_like(full_image_masks).float() + 1e-16
for crop_region_per_view, pred_masks_per_view in zip(crop_regions, new_pred_masks[1:]):
x0, y0, x1, y1 = crop_region_per_view
fused_image_masks[..., y0:y1, x0:x1] += pred_masks_per_view
fused_image_masks_valid[..., y0:y1, x0:x1] += 1
# add original masks
fused_image_masks += full_image_masks
fused_image_masks_valid += 1
## average
fuse_image_masks = fused_image_masks / fused_image_masks_valid
###### change to the single image, begin to non_overlap_supression
## ranks
pred_masks_logits = fuse_image_masks
pred_masks = (fuse_image_masks>0.5).float()
pred_scores = scores_per_image
_, m_H, m_W = pred_masks.shape
## for visualization
mask_id = torch.zeros((m_H, m_W), dtype=torch.int).to(pred_masks.device)
# mask_id_colors = np.zeros((m_H, m_W, 3), dtype=np.uint8)
# pred_masks_np = pred_masks.cpu().numpy()
sorted_scores, ranks = torch.sort(pred_scores)
ranks = ranks + 1
for index in ranks:
mask_id[(pred_masks[index-1]==1)] = int(index)
# mask_id_colors[(pred_masks_np[index-1]==1)] = self.colors[index]
# base_path = "/group/20018/gavinqi/vis_entityv2_release_debug"
# pdb.set_trace()
# file_name = batched_inputs[0]["file_name"]
# split_index, img_name = file_name.split("/")[-2:]
# save_name = img_name.split(".")[0]+".png"
# if not os.path.exists(os.path.join(base_path, save_name)):
# cv2.imwrite(os.path.join(base_path, save_name), mask_id_colors)
# re-generate mask
new_scores = []
new_masks = []
new_masks_logits = []
entity_nums = len(ranks)
for ii in range(entity_nums):
index = int(ranks[entity_nums-ii-1])
score = sorted_scores[entity_nums-ii-1]
new_scores.append(score)
new_masks.append((mask_id==index).float())
new_masks_logits.append(pred_masks_logits[index-1])
new_scores = torch.stack(new_scores)
new_masks = torch.stack(new_masks)
new_masks_logits = torch.stack(new_masks_logits)
# make result
image_size = (batched_inputs[0]["height"], batched_inputs[0]["width"])
result = Instances(image_size)
# mask (before sigmoid)
result.pred_masks = new_masks
result.pred_boxes = Boxes(torch.zeros(new_masks.size(0), 4))
# Uncomment the following to get boxes from masks (this is slow)
# calculate average mask prob
mask_scores_per_image = (new_masks_logits.sigmoid().flatten(1) * result.pred_masks.flatten(1)).sum(1) / (result.pred_masks.flatten(1).sum(1) + 1e-6)
result.scores = new_scores * mask_scores_per_image
result.pred_classes = labels_per_image
return result