Spaces:
Runtime error
Runtime error
# Copyright (c) Facebook, Inc. and its affiliates. | |
from typing import Tuple | |
import torch | |
from torch import nn | |
from torch.nn import functional as F | |
import pdb | |
import numpy as np | |
import cv2 | |
import os | |
from detectron2.config import configurable | |
from detectron2.data import MetadataCatalog | |
from detectron2.modeling import META_ARCH_REGISTRY, build_backbone, build_sem_seg_head | |
from detectron2.modeling.backbone import Backbone | |
from detectron2.modeling.postprocessing import sem_seg_postprocess | |
from detectron2.structures import Boxes, ImageList, Instances, BitMasks | |
from detectron2.utils.memory import retry_if_cuda_oom | |
from detectron2.data.datasets.builtin_meta import COCO_CATEGORIES | |
from .modeling.criterion import SetCriterion | |
from .modeling.matcher import HungarianMatcher | |
from .modeling.criterion_view import ViewSetCriterion | |
from .modeling.matcher_view import ViewHungarianMatcher | |
import pdb | |
import copy | |
class CropFormer(nn.Module): | |
""" | |
Main class for mask classification semantic segmentation architectures. | |
""" | |
def __init__( | |
self, | |
*, | |
cfg, | |
backbone: Backbone, | |
sem_seg_head: nn.Module, | |
criterion_2d: nn.Module, | |
criterion_3d: nn.Module, | |
num_queries: int, | |
object_mask_threshold: float, | |
overlap_threshold: float, | |
metadata, | |
size_divisibility: int, | |
sem_seg_postprocess_before_inference: bool, | |
pixel_mean: Tuple[float], | |
pixel_std: Tuple[float], | |
# inference | |
semantic_on: bool, | |
panoptic_on: bool, | |
instance_on: bool, | |
test_topk_per_image: int, | |
): | |
""" | |
Args: | |
backbone: a backbone module, must follow detectron2's backbone interface | |
sem_seg_head: a module that predicts semantic segmentation from backbone features | |
criterion: a module that defines the loss | |
num_queries: int, number of queries | |
object_mask_threshold: float, threshold to filter query based on classification score | |
for panoptic segmentation inference | |
overlap_threshold: overlap threshold used in general inference for panoptic segmentation | |
metadata: dataset meta, get `thing` and `stuff` category names for panoptic | |
segmentation inference | |
size_divisibility: Some backbones require the input height and width to be divisible by a | |
specific integer. We can use this to override such requirement. | |
sem_seg_postprocess_before_inference: whether to resize the prediction back | |
to original input size before semantic segmentation inference or after. | |
For high-resolution dataset like Mapillary, resizing predictions before | |
inference will cause OOM error. | |
pixel_mean, pixel_std: list or tuple with #channels element, representing | |
the per-channel mean and std to be used to normalize the input image | |
semantic_on: bool, whether to output semantic segmentation prediction | |
instance_on: bool, whether to output instance segmentation prediction | |
panoptic_on: bool, whether to output panoptic segmentation prediction | |
test_topk_per_image: int, instance segmentation parameter, keep topk instances per image | |
""" | |
super().__init__() | |
self.cfg = cfg | |
self.backbone = backbone | |
self.sem_seg_head = sem_seg_head | |
self.criterion_2d = criterion_2d | |
self.criterion_3d = criterion_3d | |
## colors | |
self.colors = [info["color"] for info in COCO_CATEGORIES] | |
self.num_queries = num_queries | |
self.overlap_threshold = overlap_threshold | |
self.object_mask_threshold = object_mask_threshold | |
self.metadata = metadata | |
if size_divisibility < 0: | |
# use backbone size_divisibility if not set | |
size_divisibility = self.backbone.size_divisibility | |
self.size_divisibility = size_divisibility | |
self.sem_seg_postprocess_before_inference = sem_seg_postprocess_before_inference | |
self.register_buffer("pixel_mean", torch.Tensor(pixel_mean).view(-1, 1, 1), False) | |
self.register_buffer("pixel_std", torch.Tensor(pixel_std).view(-1, 1, 1), False) | |
## colors | |
self.colors = [info["color"] for info in COCO_CATEGORIES] | |
# additional args | |
self.semantic_on = semantic_on | |
self.instance_on = instance_on | |
self.panoptic_on = panoptic_on | |
self.test_topk_per_image = test_topk_per_image | |
if not self.semantic_on: | |
assert self.sem_seg_postprocess_before_inference | |
def from_config(cls, cfg): | |
backbone = build_backbone(cfg) | |
sem_seg_head = build_sem_seg_head(cfg, backbone.output_shape()) | |
# Loss parameters: | |
deep_supervision = cfg.MODEL.MASK_FORMER.DEEP_SUPERVISION | |
no_object_weight = cfg.MODEL.MASK_FORMER.NO_OBJECT_WEIGHT | |
# loss weights | |
class_weight = cfg.MODEL.MASK_FORMER.CLASS_WEIGHT | |
dice_weight = cfg.MODEL.MASK_FORMER.DICE_WEIGHT | |
mask_weight = cfg.MODEL.MASK_FORMER.MASK_WEIGHT | |
# building criterion | |
matcher_2d = HungarianMatcher( | |
cost_class=class_weight, | |
cost_mask=mask_weight, | |
cost_dice=dice_weight, | |
num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS, | |
) | |
matcher_3d = ViewHungarianMatcher( | |
cost_class=class_weight, | |
cost_mask=mask_weight, | |
cost_dice=dice_weight, | |
num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS, | |
) | |
weight_dict = {"loss_ce": class_weight, "loss_mask": mask_weight, "loss_dice": dice_weight} | |
if deep_supervision: | |
dec_layers = cfg.MODEL.MASK_FORMER.DEC_LAYERS | |
aux_weight_dict = {} | |
for i in range(dec_layers - 1): | |
aux_weight_dict.update({k + f"_{i}": v for k, v in weight_dict.items()}) | |
weight_dict.update(aux_weight_dict) | |
losses = ["labels", "masks"] | |
criterion_2d = SetCriterion( | |
sem_seg_head.num_classes, | |
matcher=matcher_2d, | |
weight_dict=weight_dict, | |
eos_coef=no_object_weight, | |
losses=losses, | |
num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS, | |
oversample_ratio=cfg.MODEL.MASK_FORMER.OVERSAMPLE_RATIO, | |
importance_sample_ratio=cfg.MODEL.MASK_FORMER.IMPORTANCE_SAMPLE_RATIO, | |
) | |
criterion_3d = ViewSetCriterion( | |
sem_seg_head.num_classes, | |
matcher=matcher_3d, | |
weight_dict=weight_dict, | |
eos_coef=no_object_weight, | |
losses=losses, | |
num_points=cfg.MODEL.MASK_FORMER.TRAIN_NUM_POINTS, | |
oversample_ratio=cfg.MODEL.MASK_FORMER.OVERSAMPLE_RATIO, | |
importance_sample_ratio=cfg.MODEL.MASK_FORMER.IMPORTANCE_SAMPLE_RATIO, | |
) | |
return { | |
"cfg": cfg, | |
"backbone": backbone, | |
"sem_seg_head": sem_seg_head, | |
"criterion_2d": criterion_2d, | |
"criterion_3d": criterion_3d, | |
"num_queries": cfg.MODEL.MASK_FORMER.NUM_OBJECT_QUERIES, | |
"object_mask_threshold": cfg.MODEL.MASK_FORMER.TEST.OBJECT_MASK_THRESHOLD, | |
"overlap_threshold": cfg.MODEL.MASK_FORMER.TEST.OVERLAP_THRESHOLD, | |
"metadata": MetadataCatalog.get(cfg.DATASETS.TRAIN[0]), | |
"size_divisibility": cfg.MODEL.MASK_FORMER.SIZE_DIVISIBILITY, | |
"sem_seg_postprocess_before_inference": ( | |
cfg.MODEL.MASK_FORMER.TEST.SEM_SEG_POSTPROCESSING_BEFORE_INFERENCE | |
or cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON | |
or cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON | |
), | |
"pixel_mean": cfg.MODEL.PIXEL_MEAN, | |
"pixel_std": cfg.MODEL.PIXEL_STD, | |
# inference | |
"semantic_on": cfg.MODEL.MASK_FORMER.TEST.SEMANTIC_ON, | |
"instance_on": cfg.MODEL.MASK_FORMER.TEST.INSTANCE_ON, | |
"panoptic_on": cfg.MODEL.MASK_FORMER.TEST.PANOPTIC_ON, | |
"test_topk_per_image": cfg.TEST.DETECTIONS_PER_IMAGE, | |
} | |
def device(self): | |
return self.pixel_mean.device | |
def forward(self, batched_inputs): | |
""" | |
Args: | |
batched_inputs: a list, batched outputs of :class:`DatasetMapper`. | |
Each item in the list contains the inputs for one image. | |
For now, each item in the list is a dict that contains: | |
* "image": Tensor, image in (C, H, W) format. | |
* "instances": per-region ground truth | |
* Other information that's included in the original dicts, such as: | |
"height", "width" (int): the output resolution of the model (may be different | |
from input resolution), used in inference. | |
Returns: | |
list[dict]: | |
each dict has the results for one image. The dict contains the following keys: | |
* "sem_seg": | |
A Tensor that represents the | |
per-pixel segmentation prediced by the head. | |
The prediction has shape KxHxW that represents the logits of | |
each class for each pixel. | |
* "panoptic_seg": | |
A tuple that represent panoptic output | |
panoptic_seg (Tensor): of shape (height, width) where the values are ids for each segment. | |
segments_info (list[dict]): Describe each segment in `panoptic_seg`. | |
Each dict contains keys "id", "category_id", "isthing". | |
""" | |
## make new images | |
batched_inputs_new = [] | |
for batched_input in batched_inputs: | |
ori_infos = {"height": batched_input["height"], | |
"width": batched_input["width"], | |
"image": batched_input["image"], | |
# "file_name": batched_input["file_name"], | |
} | |
if "instances" in batched_input.keys(): | |
ori_instances = batched_input["instances"] | |
ori_instances.original_indices = torch.arange(0, len(ori_instances)).long() | |
ori_infos["instances"] = ori_instances | |
batched_inputs_new.append(ori_infos) | |
## cropped patches | |
# pdb.set_trace() | |
crop_region = batched_input["crop_region"] | |
crop_images = batched_input["image_crop"] | |
crop_o_width = int(crop_region[0][2]-crop_region[0][0]) | |
crop_o_height = int(crop_region[0][3]-crop_region[0][1]) | |
if "instances_crop" in batched_input.keys(): | |
crop_instances = batched_input["instances_crop"] | |
else: | |
crop_instances = None | |
for crop_index, crop_image in enumerate(crop_images): | |
crop_infos = {"height": crop_o_height, "width": crop_o_width, "image": crop_image} | |
if not crop_instances == None: | |
crop_instance = crop_instances[crop_index] | |
crop_instance.original_indices = torch.arange(0, len(crop_instance)).long() | |
crop_infos["instances"] = crop_instance | |
batched_inputs_new.append(crop_infos) | |
images = [x["image"].to(self.device) for x in batched_inputs_new] | |
## +1 means | |
num_views = self.cfg.ENTITY.CROP_SAMPLE_NUM_TRAIN+1 if self.training else self.cfg.ENTITY.CROP_SAMPLE_NUM_TEST+1 | |
for i in range(len(images)): | |
if i%num_views==0: | |
continue | |
_, c_h, c_w = images[i].shape | |
if "instances" in batched_inputs_new[i].keys(): | |
batched_inputs_new[i]["instances"]._image_size = (c_h, c_w) | |
images = [(x - self.pixel_mean) / self.pixel_std for x in images] | |
images = ImageList.from_tensors(images, self.size_divisibility) | |
features = self.backbone(images.tensor) | |
outputs_2d, outputs_3d = self.sem_seg_head(features) | |
if self.training: | |
if self.cfg.ENTITY.ENABLE: | |
for i in range(len(batched_inputs_new)): | |
batched_inputs_new[i]["instances"].gt_classes[:] = 0 | |
if "instances" in batched_inputs[0]: | |
gt_instances = [x["instances"].to(self.device) for x in batched_inputs_new] | |
targets_2d = self.prepare_targets_2d(copy.deepcopy(gt_instances), copy.deepcopy(images)) | |
targets_3d = self.prepare_targets_3d(copy.deepcopy(gt_instances), copy.deepcopy(images), num_views) | |
else: | |
targets = None | |
# bipartite matching-based loss | |
losses = {} | |
losses_2d = self.criterion_2d(outputs_2d, targets_2d) | |
losses_3d = self.criterion_3d(outputs_3d, targets_3d) | |
for k in list(losses_2d.keys()): | |
if k in self.criterion_2d.weight_dict: | |
losses[k+"_2d"] = losses_2d[k] * self.criterion_2d.weight_dict[k] * 0.5 | |
else: | |
# remove this loss if not specified in `weight_dict` | |
losses_2d.pop(k) | |
for k in list(losses_3d.keys()): | |
if k in self.criterion_3d.weight_dict: | |
losses[k+"_3d"] = losses_3d[k] * self.criterion_3d.weight_dict[k] | |
else: | |
# remove this loss if not specified in `weight_dict` | |
losses_3d.pop(k) | |
return losses | |
else: | |
mask_cls_results_3d = outputs_3d["pred_logits"][0] ## 100,2 | |
mask_pred_results_3d = outputs_3d["pred_masks"][0] ## 100,5,200, 304 | |
mask_cls_results_2d = outputs_2d["pred_logits"] | |
mask_pred_results_2d = outputs_2d["pred_masks"] | |
# upsample masks | |
mask_pred_results_3d = retry_if_cuda_oom(F.interpolate)( | |
mask_pred_results_3d, | |
size=(images.tensor.shape[-2], images.tensor.shape[-1]), | |
mode="bilinear", | |
align_corners=False, | |
) | |
mask_pred_results_2d = F.interpolate( | |
mask_pred_results_2d, | |
size=(images.tensor.shape[-2], images.tensor.shape[-1]), | |
mode="bilinear", | |
align_corners=False, | |
) | |
del outputs_2d, outputs_3d | |
crop_regions = batched_input["crop_region"][:num_views-1] | |
processed_results = retry_if_cuda_oom(self.inference_whole_views)( | |
mask_cls_results_3d, | |
mask_pred_results_3d, | |
mask_cls_results_2d, | |
mask_pred_results_2d, | |
batched_inputs_new, | |
images.image_sizes, | |
crop_regions) | |
# processed_results = retry_if_cuda_oom(self.instance_inference_nonoverlap)( | |
# mask_cls_results_2d[0], | |
# mask_pred_results_2d[0], | |
# batched_inputs_new[0], | |
# images.image_sizes[0]) | |
return [{"instances": processed_results}] | |
def prepare_targets_2d(self, targets, images): | |
h_pad, w_pad = images.tensor.shape[-2:] | |
new_targets = [] | |
for targets_per_image in targets: | |
gt_masks = targets_per_image.gt_masks.tensor | |
gt_valid = targets_per_image.gt_boxes_valid | |
padded_masks = torch.zeros((gt_masks.shape[0], h_pad, w_pad), dtype=gt_masks.dtype, device=gt_masks.device) | |
padded_masks[:, : gt_masks.shape[1], : gt_masks.shape[2]] = gt_masks | |
valid_index = torch.nonzero(gt_valid).flatten() | |
new_targets.append( | |
{ | |
"labels": targets_per_image.gt_classes[valid_index], | |
"masks": padded_masks[valid_index], | |
} | |
) | |
return new_targets | |
def prepare_targets_3d(self, targets_ori, images, num_views): | |
T = num_views | |
B = int(len(targets_ori) / T) | |
h_pad, w_pad = images.tensor.shape[-2:] | |
## reshape to new targets | |
new_targets = [] | |
for count, target in enumerate(targets_ori): | |
b_index, t_index = int(count // T), int(count % T) | |
if t_index == 0: | |
new_targets.append([target]) | |
else: | |
new_targets[b_index].append(target) | |
gt_instances = [] | |
for count, targets in enumerate(new_targets): | |
_num_instance = len(targets[0]) | |
mask_shape = [_num_instance, T, h_pad, w_pad] | |
gt_masks_per_view = torch.zeros(mask_shape, dtype=torch.bool, device=self.device) | |
for v_i, targets_per_view in enumerate(targets): | |
assert torch.all(targets[0].original_indices == targets_per_view.original_indices) | |
gt_ids_per_view = [] | |
gt_ids_per_valid = [] | |
gt_ids_categories = [] | |
## view first, then entities | |
for v_i, targets_per_view in enumerate(targets): | |
targets_per_view = targets_per_view.to(self.device) | |
h, w = targets_per_view.image_size | |
for i_i, (instance_mask, instance_valid) in enumerate(zip(targets_per_view.gt_masks.tensor, targets_per_view.gt_boxes_valid)): | |
if instance_valid == 1: | |
gt_masks_per_view[i_i, v_i, :h, :w] = instance_mask | |
gt_ids_per_valid.append(targets_per_view.gt_boxes_valid[None,:]) | |
gt_ids_per_view.append(targets_per_view.original_indices[None,:]) | |
gt_ids_categories.append(targets_per_view.gt_classes[None, :]) | |
## (num_instances, num_views) | |
gt_ids_per_valid = torch.cat(gt_ids_per_valid, dim=0).permute((1,0)) | |
gt_ids_per_view = torch.cat(gt_ids_per_view, dim=0).permute((1,0)) | |
gt_ids_categories = torch.cat(gt_ids_categories, dim=0).permute((1,0)) | |
gt_ids_per_view[gt_ids_per_valid == 0] = -1 | |
valid_idx = (gt_ids_per_view != 1).any(dim=-1) | |
## categoreis | |
gt_classes_per_group = gt_ids_categories[:,0] ## N | |
gt_ids_per_group = gt_ids_per_view ## N, num_views | |
gt_masks_per_group = gt_masks_per_view.float() ## N, num_views, H, W | |
## | |
gt_instances.append({"labels": gt_classes_per_group, | |
"ids": gt_ids_per_group, | |
"masks": gt_masks_per_group}) | |
return gt_instances | |
def semantic_inference(self, mask_cls, mask_pred): | |
mask_cls = F.softmax(mask_cls, dim=-1)[..., :-1] | |
mask_pred = mask_pred.sigmoid() | |
semseg = torch.einsum("qc,qhw->chw", mask_cls, mask_pred) | |
return semseg | |
def panoptic_inference(self, mask_cls, mask_pred): | |
scores, labels = F.softmax(mask_cls, dim=-1).max(-1) | |
mask_pred = mask_pred.sigmoid() | |
keep = labels.ne(self.sem_seg_head.num_classes) & (scores > self.object_mask_threshold) | |
cur_scores = scores[keep] | |
cur_classes = labels[keep] | |
cur_masks = mask_pred[keep] | |
cur_mask_cls = mask_cls[keep] | |
cur_mask_cls = cur_mask_cls[:, :-1] | |
cur_prob_masks = cur_scores.view(-1, 1, 1) * cur_masks | |
h, w = cur_masks.shape[-2:] | |
panoptic_seg = torch.zeros((h, w), dtype=torch.int32, device=cur_masks.device) | |
segments_info = [] | |
current_segment_id = 0 | |
if cur_masks.shape[0] == 0: | |
# We didn't detect any mask :( | |
return panoptic_seg, segments_info | |
else: | |
# take argmax | |
cur_mask_ids = cur_prob_masks.argmax(0) | |
stuff_memory_list = {} | |
for k in range(cur_classes.shape[0]): | |
pred_class = cur_classes[k].item() | |
isthing = pred_class in self.metadata.thing_dataset_id_to_contiguous_id.values() | |
mask_area = (cur_mask_ids == k).sum().item() | |
original_area = (cur_masks[k] >= 0.5).sum().item() | |
mask = (cur_mask_ids == k) & (cur_masks[k] >= 0.5) | |
if mask_area > 0 and original_area > 0 and mask.sum().item() > 0: | |
if mask_area / original_area < self.overlap_threshold: | |
continue | |
# merge stuff regions | |
if not isthing: | |
if int(pred_class) in stuff_memory_list.keys(): | |
panoptic_seg[mask] = stuff_memory_list[int(pred_class)] | |
continue | |
else: | |
stuff_memory_list[int(pred_class)] = current_segment_id + 1 | |
current_segment_id += 1 | |
panoptic_seg[mask] = current_segment_id | |
segments_info.append( | |
{ | |
"id": current_segment_id, | |
"isthing": bool(isthing), | |
"category_id": int(pred_class), | |
} | |
) | |
return panoptic_seg, segments_info | |
def instance_inference_nonoverlap(self, mask_cls, mask_pred): | |
# mask_pred is already processed to have the same shape as original input | |
image_size = mask_pred.shape[-2:] | |
# [Q, K] | |
scores = F.softmax(mask_cls, dim=-1)[:, :-1] | |
labels = torch.arange(self.sem_seg_head.num_classes, device=self.device).unsqueeze(0).repeat(self.num_queries, 1).flatten(0, 1) | |
# scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.num_queries, sorted=False) | |
scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.test_topk_per_image, sorted=False) | |
labels_per_image = labels[topk_indices] | |
topk_indices = topk_indices // self.sem_seg_head.num_classes | |
# mask_pred = mask_pred.unsqueeze(1).repeat(1, self.sem_seg_head.num_classes, 1).flatten(0, 1) | |
mask_pred = mask_pred[topk_indices] | |
###### ranks | |
pred_masks = (mask_pred>0).float() | |
pred_masks_logits = mask_pred.sigmoid() | |
pred_scores = scores_per_image | |
_, m_H, m_W = pred_masks.shape | |
mask_id = torch.zeros((m_H, m_W), dtype=torch.int).to(pred_masks.device) | |
sorted_scores, ranks = torch.sort(pred_scores) | |
ranks = ranks + 1 | |
for index in ranks: | |
mask_id[(pred_masks[index-1]==1)] = int(index) | |
# re-generate mask | |
new_scores = [] | |
new_masks = [] | |
new_masks_logits = [] | |
entity_nums = len(ranks) | |
for ii in range(entity_nums): | |
index = int(ranks[entity_nums-ii-1]) | |
score = sorted_scores[entity_nums-ii-1] | |
new_scores.append(score) | |
new_masks.append((mask_id==index).float()) | |
new_masks_logits.append(pred_masks_logits[index-1]) | |
new_scores = torch.stack(new_scores) | |
new_masks = torch.stack(new_masks) | |
new_masks_logits = torch.stack(new_masks_logits) | |
result = Instances(image_size) | |
# mask (before sigmoid) | |
result.pred_masks = new_masks | |
result.pred_boxes = Boxes(torch.zeros(new_masks.size(0), 4)) | |
# Uncomment the following to get boxes from masks (this is slow) | |
# calculate average mask prob | |
mask_scores_per_image = (new_masks_logits.sigmoid().flatten(1) * result.pred_masks.flatten(1)).sum(1) / (result.pred_masks.flatten(1).sum(1) + 1e-6) | |
result.scores = new_scores * mask_scores_per_image | |
result.pred_classes = labels_per_image | |
return result | |
def instance_inference(self, mask_cls, mask_pred): | |
# mask_pred is already processed to have the same shape as original input | |
image_size = mask_pred.shape[-2:] | |
# [Q, K] | |
scores = F.softmax(mask_cls, dim=-1)[:, :-1] | |
labels = torch.arange(self.sem_seg_head.num_classes, device=self.device).unsqueeze(0).repeat(self.num_queries, 1).flatten(0, 1) | |
# scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.num_queries, sorted=False) | |
scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.test_topk_per_image, sorted=False) | |
labels_per_image = labels[topk_indices] | |
topk_indices = topk_indices // self.sem_seg_head.num_classes | |
# mask_pred = mask_pred.unsqueeze(1).repeat(1, self.sem_seg_head.num_classes, 1).flatten(0, 1) | |
mask_pred = mask_pred[topk_indices] | |
# if this is panoptic segmentation, we only keep the "thing" classes | |
if self.panoptic_on: | |
keep = torch.zeros_like(scores_per_image).bool() | |
for i, lab in enumerate(labels_per_image): | |
keep[i] = lab in self.metadata.thing_dataset_id_to_contiguous_id.values() | |
scores_per_image = scores_per_image[keep] | |
labels_per_image = labels_per_image[keep] | |
mask_pred = mask_pred[keep] | |
result = Instances(image_size) | |
# mask (before sigmoid) | |
result.pred_masks = (mask_pred > 0).float() | |
result.pred_boxes = Boxes(torch.zeros(mask_pred.size(0), 4)) | |
# Uncomment the following to get boxes from masks (this is slow) | |
# result.pred_boxes = BitMasks(mask_pred > 0).get_bounding_boxes() | |
# calculate average mask prob | |
mask_scores_per_image = (mask_pred.sigmoid().flatten(1) * result.pred_masks.flatten(1)).sum(1) / (result.pred_masks.flatten(1).sum(1) + 1e-6) | |
# pdb.set_trace() | |
result.scores = scores_per_image * mask_scores_per_image | |
result.pred_classes = labels_per_image | |
return result | |
def inference_whole_views(self, pred_cls, pred_masks, pred_cls_2d, pred_masks_2d, batched_inputs, image_sizes, crop_regions): | |
## pred_masks: [100, 5, 800, 1216] | |
## pred_masks_2d: [5, 100, 800, 1216] | |
scores = F.softmax(pred_cls, dim=-1)[:,:-1] # 100,1 | |
scores_2d = F.softmax(pred_cls_2d, dim=-1)[:, :, :-1] # 5, 100, 1 | |
# scores = (scores+scores_2d[0])/2 | |
labels = torch.arange(self.sem_seg_head.num_classes, device=self.device).unsqueeze(0).repeat(self.num_queries, 1).flatten(0, 1) | |
### keep all the indices | |
scores_per_image, topk_indices = scores.flatten(0, 1).topk(self.num_queries, sorted=False) | |
labels_per_image = labels[topk_indices] | |
# topk_indices = topk_indices // self.sem_seg_head.num_classes | |
topk_indices = torch.div(topk_indices, self.sem_seg_head.num_classes, rounding_mode="trunc") | |
pred_masks = pred_masks[topk_indices] | |
pred_masks = pred_masks.permute((1,0,2,3)) | |
new_pred_masks = [] | |
for view_index, (pred_masks_per_view, batched_input_per_view, image_size_per_view) in enumerate(zip(pred_masks, batched_inputs, image_sizes)): | |
O_H = batched_input_per_view["height"] | |
O_W = batched_input_per_view["width"] | |
SO_H, SO_W = image_size_per_view | |
pred_masks_per_view = pred_masks_per_view[..., : SO_H, :SO_W] | |
pred_masks_per_view = F.interpolate(pred_masks_per_view[None], size=(O_H, O_W), mode="bilinear", align_corners=False) | |
new_pred_masks.append(pred_masks_per_view[0].sigmoid()) | |
## fuse the masks | |
full_image_masks = new_pred_masks[0] | |
## fuse crop image | |
fused_image_masks = torch.zeros_like(full_image_masks).float() | |
fused_image_masks_valid = torch.zeros_like(full_image_masks).float() + 1e-16 | |
for crop_region_per_view, pred_masks_per_view in zip(crop_regions, new_pred_masks[1:]): | |
x0, y0, x1, y1 = crop_region_per_view | |
fused_image_masks[..., y0:y1, x0:x1] += pred_masks_per_view | |
fused_image_masks_valid[..., y0:y1, x0:x1] += 1 | |
# add original masks | |
fused_image_masks += full_image_masks | |
fused_image_masks_valid += 1 | |
## average | |
fuse_image_masks = fused_image_masks / fused_image_masks_valid | |
###### change to the single image, begin to non_overlap_supression | |
## ranks | |
pred_masks_logits = fuse_image_masks | |
pred_masks = (fuse_image_masks>0.5).float() | |
pred_scores = scores_per_image | |
_, m_H, m_W = pred_masks.shape | |
## for visualization | |
mask_id = torch.zeros((m_H, m_W), dtype=torch.int).to(pred_masks.device) | |
# mask_id_colors = np.zeros((m_H, m_W, 3), dtype=np.uint8) | |
# pred_masks_np = pred_masks.cpu().numpy() | |
sorted_scores, ranks = torch.sort(pred_scores) | |
ranks = ranks + 1 | |
for index in ranks: | |
mask_id[(pred_masks[index-1]==1)] = int(index) | |
# mask_id_colors[(pred_masks_np[index-1]==1)] = self.colors[index] | |
# base_path = "/group/20018/gavinqi/vis_entityv2_release_debug" | |
# pdb.set_trace() | |
# file_name = batched_inputs[0]["file_name"] | |
# split_index, img_name = file_name.split("/")[-2:] | |
# save_name = img_name.split(".")[0]+".png" | |
# if not os.path.exists(os.path.join(base_path, save_name)): | |
# cv2.imwrite(os.path.join(base_path, save_name), mask_id_colors) | |
# re-generate mask | |
new_scores = [] | |
new_masks = [] | |
new_masks_logits = [] | |
entity_nums = len(ranks) | |
for ii in range(entity_nums): | |
index = int(ranks[entity_nums-ii-1]) | |
score = sorted_scores[entity_nums-ii-1] | |
new_scores.append(score) | |
new_masks.append((mask_id==index).float()) | |
new_masks_logits.append(pred_masks_logits[index-1]) | |
new_scores = torch.stack(new_scores) | |
new_masks = torch.stack(new_masks) | |
new_masks_logits = torch.stack(new_masks_logits) | |
# make result | |
image_size = (batched_inputs[0]["height"], batched_inputs[0]["width"]) | |
result = Instances(image_size) | |
# mask (before sigmoid) | |
result.pred_masks = new_masks | |
result.pred_boxes = Boxes(torch.zeros(new_masks.size(0), 4)) | |
# Uncomment the following to get boxes from masks (this is slow) | |
# calculate average mask prob | |
mask_scores_per_image = (new_masks_logits.sigmoid().flatten(1) * result.pred_masks.flatten(1)).sum(1) / (result.pred_masks.flatten(1).sum(1) + 1e-6) | |
result.scores = new_scores * mask_scores_per_image | |
result.pred_classes = labels_per_image | |
return result | |