Spaces:
Runtime error
Runtime error
File size: 8,327 Bytes
54a7220 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 255 256 257 258 259 260 261 262 263 264 265 266 267 268 269 270 271 |
import os
import numpy as np
import tempfile
import matplotlib.pyplot as plt
from sklearn.metrics import euclidean_distances
from skimage.io import imsave
def rgb2hex(rgb_number):
"""
Args:
- rgb_number (sequence of float)
Returns:
- hex_number (string)
"""
return '#%02x%02x%02x' % tuple([int(np.round(val * 255)) for val in rgb_number])
def hex2rgb(hexcolor_str):
"""
Args:
- hexcolor_str (string): e.g. '#ffffff' or '33cc00'
Returns:
- rgb_color (sequence of floats): e.g. (0.2, 0.3, 0)
"""
color = hexcolor_str.strip('#')
rgb = lambda x: round(int(x, 16) / 255., 5)
return (rgb(color[:2]), rgb(color[2:4]), rgb(color[4:6]))
def color_hist_to_palette_image(color_hist, palette, percentile=90,
width=200, height=50, filename=None):
"""
Output the main colors in the histogram to a "palette image."
Parameters
----------
color_hist : (K,) ndarray
palette : rayleigh.Palette
percentile : int, optional:
Output only colors above this percentile of prevalence in the histogram.
filename : string, optional:
If given, save the resulting image to file.
Returns
-------
rgb_image : ndarray
"""
ind = np.argsort(-color_hist)
ind = ind[color_hist[ind] > np.percentile(color_hist, percentile)]
hex_list = np.take(palette.hex_list, ind)
values = color_hist[ind]
rgb_image = palette_query_to_rgb_image(dict(zip(hex_list, values)))
if filename:
imsave(filename, rgb_image)
return rgb_image
def palette_query_to_rgb_image(palette_query, width=200, height=50):
"""
Convert a list of hex colors and their values to an RGB image of given
width and height.
Args:
- palette_query (dict):
a dictionary of hex colors to unnormalized values,
e.g. {'#ffffff': 20, '#33cc00': 0.4}.
"""
hex_list, values = zip(*palette_query.items())
values = np.array(values)
values /= values.sum()
nums = np.array(values * width, dtype=int)
rgb_arrays = (np.tile(np.array(hex2rgb(x)), (num, 1))
for x, num in zip(hex_list, nums))
rgb_array = np.vstack(list(rgb_arrays))
rgb_image = rgb_array[np.newaxis, :, :]
rgb_image = np.tile(rgb_image, (height, 1, 1))
return rgb_image
def plot_histogram(color_hist, palette, plot_filename=None):
"""
Return Figure containing the color palette histogram.
Args:
- color_hist (K, ndarray)
- palette (Palette)
- plot_filename (string) [default=None]:
Save histogram to this file, if given.
Returns:
- fig (Figure)
"""
fig = plt.figure(figsize=(5, 3), dpi=150)
ax = fig.add_subplot(111)
ax.bar(
range(len(color_hist)), color_hist,
color=palette.hex_list, edgecolor='black')
ax.set_ylim((0, 0.3))
ax.xaxis.set_ticks([])
ax.set_xlim((0, len(palette.hex_list)))
if plot_filename:
fig.savefig(plot_filename, dpi=150, facecolor='none')
return fig
def output_histogram_base64(color_hist, palette):
"""
Return base64-encoded image containing the color palette histogram.
Args:
- color_hist (K, ndarray)
- palette (Palette)
Returns:
- data_uri (base64 encoded string)
"""
_, tfname = tempfile.mkstemp('.png')
plot_histogram(color_hist, palette, tfname)
data_uri = open(tfname, 'rb').read().encode('base64').replace('\n', '')
os.remove(tfname)
return data_uri
def histogram_colors_strict(lab_array, palette, plot_filename=None):
"""
Return a palette histogram of colors in the image.
Parameters
----------
lab_array : (N,3) ndarray
The L*a*b color of each of N pixels.
palette : rayleigh.Palette
Containing K colors.
plot_filename : string, optional
If given, save histogram to this filename.
Returns
-------
color_hist : (K,) ndarray
"""
# This is the fastest way that I've found.
# >>> %%timeit -n 200 from sklearn.metrics import euclidean_distances
# >>> euclidean_distances(palette, lab_array, squared=True)
dist = euclidean_distances(palette.lab_array, lab_array, squared=True).T
min_ind = np.argmin(dist, axis=1)
num_colors = palette.lab_array.shape[0]
num_pixels = lab_array.shape[0]
color_hist = 1. * np.bincount(min_ind, minlength=num_colors) / num_pixels
if plot_filename is not None:
plot_histogram(color_hist, palette, plot_filename)
return color_hist
def histogram_colors_smoothed(lab_array, palette, sigma=10,
plot_filename=None, direct=True):
"""
Returns a palette histogram of colors in the image, smoothed with
a Gaussian. Can smooth directly per-pixel, or after computing a strict
histogram.
Parameters
----------
lab_array : (N,3) ndarray
The L*a*b color of each of N pixels.
palette : rayleigh.Palette
Containing K colors.
sigma : float
Variance of the smoothing Gaussian.
direct : bool, optional
If True, constructs a smoothed histogram directly from pixels.
If False, constructs a nearest-color histogram and then smoothes it.
Returns
-------
color_hist : (K,) ndarray
"""
if direct:
color_hist_smooth = histogram_colors_with_smoothing(
lab_array, palette, sigma)
else:
color_hist_strict = histogram_colors_strict(lab_array, palette)
color_hist_smooth = smooth_histogram(color_hist_strict, palette, sigma)
if plot_filename is not None:
plot_histogram(color_hist_smooth, palette, plot_filename)
return color_hist_smooth
def smooth_histogram(color_hist, palette, sigma=10):
"""
Smooth the given palette histogram with a Gaussian of variance sigma.
Parameters
----------
color_hist : (K,) ndarray
palette : rayleigh.Palette
containing K colors.
Returns
-------
color_hist_smooth : (K,) ndarray
"""
n = 2. * sigma ** 2
weights = np.exp(-palette.distances / n)
norm_weights = weights / weights.sum(1)[:, np.newaxis]
color_hist_smooth = (norm_weights * color_hist).sum(1)
color_hist_smooth[color_hist_smooth < 1e-5] = 0
return color_hist_smooth
def histogram_colors_with_smoothing(lab_array, palette, sigma=10):
"""
Assign colors in the image to nearby colors in the palette, weighted by
distance in Lab color space.
Parameters
----------
lab_array (N,3) ndarray:
N is the number of data points, columns are L, a, b values.
palette : rayleigh.Palette
containing K colors.
sigma : float
(0,1] value to control the steepness of exponential falloff.
To see the effect:
>>> from pylab import *
>>> ds = linspace(0,5000) # squared distance
>>> sigma=10; plot(ds, exp(-ds/(2*sigma**2)), label='$\sigma=%.1f$'%sigma)
>>> sigma=20; plot(ds, exp(-ds/(2*sigma**2)), label='$\sigma=%.1f$'%sigma)
>>> sigma=40; plot(ds, exp(-ds/(2*sigma**2)), label='$\sigma=%.1f$'%sigma)
>>> ylim([0,1]); legend();
>>> xlabel('Squared distance'); ylabel('Weight');
>>> title('Exponential smoothing')
>>> #plt.savefig('exponential_smoothing.png', dpi=300)
sigma=20 seems reasonable: hits 0 around squared distance of 4000.
Returns:
color_hist : (K,) ndarray
the normalized, smooth histogram of colors.
"""
dist = euclidean_distances(palette.lab_array, lab_array, squared=True).T
n = 2. * sigma ** 2
weights = np.exp(-dist / n)
# normalize by sum: if a color is equally well represented by several colors
# it should not contribute much to the overall histogram
normalizing = weights.sum(1)
normalizing[normalizing == 0] = 1e16
normalized_weights = weights / normalizing[:, np.newaxis]
color_hist = normalized_weights.sum(0)
color_hist /= lab_array.shape[0]
color_hist[color_hist < 1e-5] = 0
return color_hist
def makedirs(dirname):
"Does what mkdir -p does, and returns dirname."
if not os.path.exists(dirname):
try:
os.makedirs(dirname)
except:
print("Exception on os.makedirs")
return dirname
|