Spaces:
Running
Running
Create app.py
Browse files
app.py
ADDED
@@ -0,0 +1,681 @@
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
1 |
+
import streamlit as st
|
2 |
+
from PIL import Image, ImageDraw, ImageFont, ExifTags
|
3 |
+
import cv2
|
4 |
+
import numpy as np
|
5 |
+
from skimage.metrics import structural_similarity as ssim
|
6 |
+
import pandas as pd
|
7 |
+
import fitz # PyMuPDF
|
8 |
+
import docx
|
9 |
+
from difflib import HtmlDiff, SequenceMatcher
|
10 |
+
import os
|
11 |
+
import uuid
|
12 |
+
import logging
|
13 |
+
import requests
|
14 |
+
import zipfile
|
15 |
+
from typing import Union, Dict, Any
|
16 |
+
import time
|
17 |
+
import base64
|
18 |
+
import io
|
19 |
+
from io import BytesIO
|
20 |
+
|
21 |
+
icon_url = "https://raw.githubusercontent.com/noumanjavaid96/ai-as-an-api/refs/heads/master/image%20(39).png"
|
22 |
+
|
23 |
+
response = requests.get(icon_url)
|
24 |
+
icon_image = Image.open(BytesIO(response.content))
|
25 |
+
|
26 |
+
|
27 |
+
# Page configuration
|
28 |
+
st.set_page_config(
|
29 |
+
page_title="Centurion Analysis Tool",
|
30 |
+
page_icon=icon_image,
|
31 |
+
layout="wide",
|
32 |
+
initial_sidebar_state="expanded"
|
33 |
+
)
|
34 |
+
|
35 |
+
# Custom CSS
|
36 |
+
st.html(
|
37 |
+
"""
|
38 |
+
<style>
|
39 |
+
.title-container {
|
40 |
+
display: flex;
|
41 |
+
align-items: center;
|
42 |
+
margin-bottom: 20px; /* Add margin for spacing */
|
43 |
+
}
|
44 |
+
.title-icon {
|
45 |
+
width: 50px;
|
46 |
+
height: 50px;
|
47 |
+
margin-right: 10px; /* Add margin between icon and title */
|
48 |
+
}
|
49 |
+
.title-text {
|
50 |
+
font-size: 36px; /* Adjust font size as needed */
|
51 |
+
font-weight: bold;
|
52 |
+
}
|
53 |
+
</style>
|
54 |
+
""",
|
55 |
+
|
56 |
+
)
|
57 |
+
st.markdown(
|
58 |
+
f"""
|
59 |
+
<div class="title-container">
|
60 |
+
<img class="title-icon" src="{icon_url}" alt="Icon">
|
61 |
+
<div class="title-text">Centurion Analysis Tool</div>
|
62 |
+
</div>
|
63 |
+
""",
|
64 |
+
unsafe_allow_html=True
|
65 |
+
)
|
66 |
+
|
67 |
+
|
68 |
+
st.write("Welcome to the Centurion Analysis Tool! Use the tabs above to navigate.")
|
69 |
+
|
70 |
+
# Constants
|
71 |
+
UPLOAD_DIR = "uploaded_files"
|
72 |
+
NVIDIA_API_KEY = "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"
|
73 |
+
|
74 |
+
# Create upload directory if it doesn't exist
|
75 |
+
if not os.path.exists(UPLOAD_DIR):
|
76 |
+
os.makedirs(UPLOAD_DIR)
|
77 |
+
|
78 |
+
# Configure logging
|
79 |
+
logging.basicConfig(level=logging.INFO)
|
80 |
+
logger = logging.getLogger(__name__)
|
81 |
+
|
82 |
+
def main():
|
83 |
+
# Title and icon using HTML for better control
|
84 |
+
st.markdown(
|
85 |
+
"""
|
86 |
+
<div class="title-container">
|
87 |
+
<img class="title-icon" src="https://raw.githubusercontent.com/noumanjavaid96/ai-as-an-api/refs/heads/master/image%20(39).png">
|
88 |
+
<span class="title-text">CENTURION</span>
|
89 |
+
</div>
|
90 |
+
""",
|
91 |
+
unsafe_allow_html=True,
|
92 |
+
)
|
93 |
+
|
94 |
+
# Create tabs for different functionalities
|
95 |
+
tabs = st.tabs(["Image Comparison", "Image Comparison with Watermarking", "Document Comparison Tool"])
|
96 |
+
|
97 |
+
with tabs[0]:
|
98 |
+
image_comparison()
|
99 |
+
|
100 |
+
with tabs[1]:
|
101 |
+
image_comparison_and_watermarking()
|
102 |
+
|
103 |
+
with tabs[2]:
|
104 |
+
document_comparison_tool()
|
105 |
+
|
106 |
+
|
107 |
+
def image_comparison():
|
108 |
+
st.header("Image Comparison")
|
109 |
+
st.write("""
|
110 |
+
Upload two images to compare them and find differences.
|
111 |
+
""")
|
112 |
+
|
113 |
+
# Upload images
|
114 |
+
col1, col2 = st.columns(2)
|
115 |
+
|
116 |
+
with col1:
|
117 |
+
st.subheader("Original Image")
|
118 |
+
uploaded_file1 = st.file_uploader("Choose the original image", type=["png", "jpg", "jpeg"], key="comp1")
|
119 |
+
|
120 |
+
with col2:
|
121 |
+
st.subheader("Image to Compare")
|
122 |
+
uploaded_file2 = st.file_uploader("Choose the image to compare", type=["png", "jpg", "jpeg"], key="comp2")
|
123 |
+
|
124 |
+
if uploaded_file1 is not None and uploaded_file2 is not None:
|
125 |
+
# Read images
|
126 |
+
image1 = Image.open(uploaded_file1)
|
127 |
+
image2 = Image.open(uploaded_file2)
|
128 |
+
|
129 |
+
# Convert images to OpenCV format
|
130 |
+
img1 = cv2.cvtColor(np.array(image1), cv2.COLOR_RGB2BGR)
|
131 |
+
img2 = cv2.cvtColor(np.array(image2), cv2.COLOR_RGB2BGR)
|
132 |
+
|
133 |
+
# Resize images to the same size if necessary
|
134 |
+
if img1.shape != img2.shape:
|
135 |
+
st.warning("Images are not the same size. Resizing the second image to match the first.")
|
136 |
+
img2 = cv2.resize(img2, (img1.shape[1], img1.shape[0]))
|
137 |
+
|
138 |
+
# Convert to grayscale
|
139 |
+
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
|
140 |
+
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
|
141 |
+
|
142 |
+
# Compute SSIM between two images
|
143 |
+
score, diff = ssim(gray1, gray2, full=True)
|
144 |
+
st.write(f"**Structural Similarity Index (SSIM): {score:.4f}**")
|
145 |
+
diff = (diff * 255).astype("uint8")
|
146 |
+
|
147 |
+
# Threshold the difference image
|
148 |
+
thresh = cv2.threshold(diff, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
|
149 |
+
|
150 |
+
# Find contours of the differences
|
151 |
+
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
152 |
+
|
153 |
+
# Create copies of the images to draw on
|
154 |
+
img1_diff = img1.copy()
|
155 |
+
img2_diff = img2.copy()
|
156 |
+
|
157 |
+
# Draw rectangles around differences
|
158 |
+
for cnt in contours:
|
159 |
+
x, y, w, h = cv2.boundingRect(cnt)
|
160 |
+
cv2.rectangle(img1_diff, (x, y), (x + w, y + h), (0, 0, 255), 2)
|
161 |
+
cv2.rectangle(img2_diff, (x, y), (x + w, y + h), (0, 0, 255), 2)
|
162 |
+
|
163 |
+
# Convert images back to RGB for displaying with Streamlit
|
164 |
+
img1_display = cv2.cvtColor(img1_diff, cv2.COLOR_BGR2RGB)
|
165 |
+
img2_display = cv2.cvtColor(img2_diff, cv2.COLOR_BGR2RGB)
|
166 |
+
diff_display = cv2.cvtColor(diff, cv2.COLOR_GRAY2RGB)
|
167 |
+
thresh_display = cv2.cvtColor(thresh, cv2.COLOR_GRAY2RGB)
|
168 |
+
|
169 |
+
# Display images
|
170 |
+
st.write("## Results")
|
171 |
+
st.write("Differences are highlighted in red boxes.")
|
172 |
+
|
173 |
+
st.image([img1_display, img2_display], caption=["Original Image with Differences", "Compared Image with Differences"], width=300)
|
174 |
+
|
175 |
+
st.write("## Difference Image")
|
176 |
+
st.image(diff_display, caption="Difference Image", width=300)
|
177 |
+
|
178 |
+
st.write("## Thresholded Difference Image")
|
179 |
+
st.image(thresh_display, caption="Thresholded Difference Image", width=300)
|
180 |
+
|
181 |
+
else:
|
182 |
+
st.info("Please upload both images.")
|
183 |
+
|
184 |
+
def image_comparison_and_watermarking():
|
185 |
+
st.header("Image Comparison and Watermarking")
|
186 |
+
st.write("""
|
187 |
+
Upload two images to compare them, find differences, add a watermark, and compare metadata.
|
188 |
+
""")
|
189 |
+
|
190 |
+
# Upload images
|
191 |
+
st.subheader("Upload Images")
|
192 |
+
col1, col2 = st.columns(2)
|
193 |
+
|
194 |
+
with col1:
|
195 |
+
st.subheader("Original Image")
|
196 |
+
uploaded_file1 = st.file_uploader("Choose the original image", type=["png", "jpg", "jpeg"], key="wm1")
|
197 |
+
|
198 |
+
with col2:
|
199 |
+
st.subheader("Image to Compare")
|
200 |
+
uploaded_file2 = st.file_uploader("Choose the image to compare", type=["png", "jpg", "jpeg"], key="wm2")
|
201 |
+
|
202 |
+
watermark_text = st.text_input("Enter watermark text (optional):", value="")
|
203 |
+
|
204 |
+
if uploaded_file1 is not None and uploaded_file2 is not None:
|
205 |
+
# Read images
|
206 |
+
image1 = Image.open(uploaded_file1).convert("RGB")
|
207 |
+
image2 = Image.open(uploaded_file2).convert("RGB")
|
208 |
+
|
209 |
+
# Display original images
|
210 |
+
st.write("### Uploaded Images")
|
211 |
+
st.image([image1, image2], caption=["Original Image", "Image to Compare"], width=300)
|
212 |
+
|
213 |
+
# Add watermark if text is provided
|
214 |
+
if watermark_text:
|
215 |
+
st.write("### Watermarked Original Image")
|
216 |
+
image1_watermarked = add_watermark(image1, watermark_text)
|
217 |
+
st.image(image1_watermarked, caption="Original Image with Watermark", width=300)
|
218 |
+
else:
|
219 |
+
image1_watermarked = image1.copy()
|
220 |
+
|
221 |
+
# Convert images to OpenCV format
|
222 |
+
img1 = cv2.cvtColor(np.array(image1_watermarked), cv2.COLOR_RGB2BGR)
|
223 |
+
img2 = cv2.cvtColor(np.array(image2), cv2.COLOR_RGB2BGR)
|
224 |
+
|
225 |
+
# Resize images to the same size if necessary
|
226 |
+
if img1.shape != img2.shape:
|
227 |
+
st.warning("Images are not the same size. Resizing the second image to match the first.")
|
228 |
+
img2 = cv2.resize(img2, (img1.shape[1], img1.shape[0]))
|
229 |
+
|
230 |
+
# Convert to grayscale
|
231 |
+
gray1 = cv2.cvtColor(img1, cv2.COLOR_BGR2GRAY)
|
232 |
+
gray2 = cv2.cvtColor(img2, cv2.COLOR_BGR2GRAY)
|
233 |
+
|
234 |
+
# Compute SSIM between two images
|
235 |
+
score, diff = ssim(gray1, gray2, full=True)
|
236 |
+
st.write(f"**Structural Similarity Index (SSIM): {score:.4f}**")
|
237 |
+
diff = (diff * 255).astype("uint8")
|
238 |
+
|
239 |
+
# Threshold the difference image
|
240 |
+
thresh = cv2.threshold(diff, 0, 255, cv2.THRESH_BINARY_INV | cv2.THRESH_OTSU)[1]
|
241 |
+
|
242 |
+
# Find contours of the differences
|
243 |
+
contours, _ = cv2.findContours(thresh, cv2.RETR_EXTERNAL, cv2.CHAIN_APPROX_SIMPLE)
|
244 |
+
|
245 |
+
# Create copies of the images to draw on
|
246 |
+
img1_diff = img1.copy()
|
247 |
+
img2_diff = img2.copy()
|
248 |
+
|
249 |
+
# Draw rectangles around differences
|
250 |
+
for cnt in contours:
|
251 |
+
x, y, w, h = cv2.boundingRect(cnt)
|
252 |
+
cv2.rectangle(img1_diff, (x, y), (x + w, y + h), (0, 0, 255), 2)
|
253 |
+
cv2.rectangle(img2_diff, (x, y), (x + w, y + h), (0, 0, 255), 2)
|
254 |
+
|
255 |
+
# Convert images back to RGB for displaying with Streamlit
|
256 |
+
img1_display = cv2.cvtColor(img1_diff, cv2.COLOR_BGR2RGB)
|
257 |
+
img2_display = cv2.cvtColor(img2_diff, cv2.COLOR_BGR2RGB)
|
258 |
+
diff_display = cv2.cvtColor(diff, cv2.COLOR_GRAY2RGB)
|
259 |
+
thresh_display = cv2.cvtColor(thresh, cv2.COLOR_GRAY2RGB)
|
260 |
+
|
261 |
+
# Display images with differences highlighted
|
262 |
+
st.write("## Results")
|
263 |
+
st.write("Differences are highlighted in red boxes.")
|
264 |
+
|
265 |
+
st.image([img1_display, img2_display], caption=["Original Image with Differences", "Compared Image with Differences"], width=300)
|
266 |
+
|
267 |
+
st.write("## Difference Image")
|
268 |
+
st.image(diff_display, caption="Difference Image", width=300)
|
269 |
+
|
270 |
+
st.write("## Thresholded Difference Image")
|
271 |
+
st.image(thresh_display, caption="Thresholded Difference Image", width=300)
|
272 |
+
|
273 |
+
# Metadata comparison
|
274 |
+
st.write("## Metadata Comparison")
|
275 |
+
metadata1 = get_metadata(image1)
|
276 |
+
metadata2 = get_metadata(image2)
|
277 |
+
|
278 |
+
if metadata1 and metadata2:
|
279 |
+
metadata_df = compare_metadata(metadata1, metadata2)
|
280 |
+
if metadata_df is not None:
|
281 |
+
st.write("### Metadata Differences")
|
282 |
+
st.dataframe(metadata_df)
|
283 |
+
else:
|
284 |
+
st.write("No differences in metadata.")
|
285 |
+
else:
|
286 |
+
st.write("Metadata not available for one or both images.")
|
287 |
+
|
288 |
+
else:
|
289 |
+
st.info("Please upload both images.")
|
290 |
+
|
291 |
+
def add_watermark(image, text):
|
292 |
+
# Create a blank image for the text with transparent background
|
293 |
+
txt = Image.new('RGBA', image.size, (255, 255, 255, 0))
|
294 |
+
draw = ImageDraw.Draw(txt)
|
295 |
+
|
296 |
+
# Choose a font and size
|
297 |
+
font_size = max(20, image.size[0] // 20)
|
298 |
+
try:
|
299 |
+
font = ImageFont.truetype("arial.ttf", font_size)
|
300 |
+
except IOError:
|
301 |
+
font = ImageFont.load_default()
|
302 |
+
|
303 |
+
# Calculate text bounding box
|
304 |
+
bbox = font.getbbox(text)
|
305 |
+
textwidth = bbox[2] - bbox[0]
|
306 |
+
textheight = bbox[3] - bbox[1]
|
307 |
+
|
308 |
+
# Position the text at the bottom right
|
309 |
+
x = image.size[0] - textwidth - 10
|
310 |
+
y = image.size[1] - textheight - 10
|
311 |
+
|
312 |
+
# Draw text with semi-transparent fill
|
313 |
+
draw.text((x, y), text, font=font, fill=(255, 255, 255, 128))
|
314 |
+
|
315 |
+
# Combine the original image with the text overlay
|
316 |
+
watermarked = Image.alpha_composite(image.convert('RGBA'), txt)
|
317 |
+
|
318 |
+
return watermarked.convert('RGB')
|
319 |
+
|
320 |
+
def get_metadata(image):
|
321 |
+
exif_data = {}
|
322 |
+
info = image.getexif()
|
323 |
+
if info:
|
324 |
+
for tag, value in info.items():
|
325 |
+
decoded = ExifTags.TAGS.get(tag, tag)
|
326 |
+
exif_data[decoded] = value
|
327 |
+
return exif_data
|
328 |
+
|
329 |
+
def compare_metadata(meta1, meta2):
|
330 |
+
keys = set(meta1.keys()).union(set(meta2.keys()))
|
331 |
+
data = []
|
332 |
+
for key in keys:
|
333 |
+
value1 = meta1.get(key, "Not Available")
|
334 |
+
value2 = meta2.get(key, "Not Available")
|
335 |
+
if value1 != value2:
|
336 |
+
data.append({"Metadata Field": key, "Original Image": value1, "Compared Image": value2})
|
337 |
+
if data:
|
338 |
+
df = pd.DataFrame(data)
|
339 |
+
return df
|
340 |
+
else:
|
341 |
+
return None
|
342 |
+
|
343 |
+
def document_comparison_tool():
|
344 |
+
st.header("📄 Advanced Document Comparison Tool")
|
345 |
+
st.markdown("### Compare documents and detect changes with AI-powered OCR")
|
346 |
+
|
347 |
+
# Sidebar settings
|
348 |
+
with st.sidebar:
|
349 |
+
st.header("ℹ️ About")
|
350 |
+
st.markdown("""
|
351 |
+
This tool allows you to:
|
352 |
+
- Compare PDF and Word documents
|
353 |
+
- Process images using NVIDIA's OCR
|
354 |
+
- Detect and highlight changes
|
355 |
+
- Generate similarity metrics
|
356 |
+
""")
|
357 |
+
|
358 |
+
st.header("🛠️ Settings")
|
359 |
+
show_metadata = st.checkbox("Show Metadata", value=True, key='doc_show_metadata')
|
360 |
+
show_detailed_diff = st.checkbox("Show Detailed Differences", value=True, key='doc_show_detailed_diff')
|
361 |
+
|
362 |
+
# Main content
|
363 |
+
col1, col2 = st.columns(2)
|
364 |
+
|
365 |
+
with col1:
|
366 |
+
st.markdown("### Original Document")
|
367 |
+
original_file = st.file_uploader(
|
368 |
+
"Upload original document",
|
369 |
+
type=["pdf", "docx", "jpg", "jpeg", "png"],
|
370 |
+
key='doc_original_file',
|
371 |
+
help="Supported formats: PDF, DOCX, JPG, PNG"
|
372 |
+
)
|
373 |
+
|
374 |
+
with col2:
|
375 |
+
st.markdown("### Modified Document")
|
376 |
+
modified_file = st.file_uploader(
|
377 |
+
"Upload modified document",
|
378 |
+
type=["pdf", "docx", "jpg", "jpeg", "png"],
|
379 |
+
key='doc_modified_file',
|
380 |
+
help="Supported formats: PDF, DOCX, JPG, PNG"
|
381 |
+
)
|
382 |
+
|
383 |
+
if original_file and modified_file:
|
384 |
+
try:
|
385 |
+
with st.spinner("Processing documents..."):
|
386 |
+
# Initialize OCR handler
|
387 |
+
ocr_handler = NVIDIAOCRHandler()
|
388 |
+
|
389 |
+
# Process files
|
390 |
+
original_file_path = save_uploaded_file(original_file)
|
391 |
+
modified_file_path = save_uploaded_file(modified_file)
|
392 |
+
|
393 |
+
# Extract text based on file type
|
394 |
+
original_ext = os.path.splitext(original_file.name)[1].lower()
|
395 |
+
modified_ext = os.path.splitext(modified_file.name)[1].lower()
|
396 |
+
|
397 |
+
# Process original document
|
398 |
+
if original_ext in ['.jpg', '.jpeg', '.png']:
|
399 |
+
original_result = ocr_handler.process_image(original_file_path, f"{UPLOAD_DIR}/original_ocr")
|
400 |
+
with open(f"{UPLOAD_DIR}/original_ocr/text.txt", "r") as f:
|
401 |
+
original_text = f.read()
|
402 |
+
elif original_ext == '.pdf':
|
403 |
+
original_text = extract_text_pdf(original_file_path)
|
404 |
+
else:
|
405 |
+
original_text = extract_text_word(original_file_path)
|
406 |
+
|
407 |
+
# Process modified document
|
408 |
+
if modified_ext in ['.jpg', '.jpeg', '.png']:
|
409 |
+
modified_result = ocr_handler.process_image(modified_file_path, f"{UPLOAD_DIR}/modified_ocr")
|
410 |
+
with open(f"{UPLOAD_DIR}/modified_ocr/text.txt", "r") as f:
|
411 |
+
modified_text = f.read()
|
412 |
+
elif modified_ext == '.pdf':
|
413 |
+
modified_text = extract_text_pdf(modified_file_path)
|
414 |
+
else:
|
415 |
+
modified_text = extract_text_word(modified_file_path)
|
416 |
+
|
417 |
+
# Calculate similarity
|
418 |
+
similarity_score = calculate_similarity(original_text, modified_text)
|
419 |
+
|
420 |
+
# Display results
|
421 |
+
st.markdown("### 📊 Analysis Results")
|
422 |
+
|
423 |
+
metrics_col1, metrics_col2, metrics_col3 = st.columns(3)
|
424 |
+
with metrics_col1:
|
425 |
+
st.metric("Similarity Score", f"{similarity_score:.2%}")
|
426 |
+
with metrics_col2:
|
427 |
+
st.metric("Changes Detected", "Yes" if similarity_score < 1 else "No")
|
428 |
+
with metrics_col3:
|
429 |
+
st.metric("Processing Status", "Complete ✅")
|
430 |
+
|
431 |
+
if show_detailed_diff:
|
432 |
+
st.markdown("### 🔍 Detailed Comparison")
|
433 |
+
diff_html = compare_texts(original_text, modified_text)
|
434 |
+
st.components.v1.html(diff_html, height=600, scrolling=True)
|
435 |
+
|
436 |
+
# Download results
|
437 |
+
st.markdown("### 💾 Download Results")
|
438 |
+
if st.button("Generate Report"):
|
439 |
+
with st.spinner("Generating report..."):
|
440 |
+
# Simulate report generation
|
441 |
+
time.sleep(2)
|
442 |
+
st.success("Report generated successfully!")
|
443 |
+
st.download_button(
|
444 |
+
label="Download Report",
|
445 |
+
data=diff_html,
|
446 |
+
file_name="comparison_report.html",
|
447 |
+
mime="text/html"
|
448 |
+
)
|
449 |
+
|
450 |
+
except Exception as e:
|
451 |
+
st.error(f"An error occurred: {str(e)}")
|
452 |
+
logger.error(f"Error processing documents: {str(e)}")
|
453 |
+
else:
|
454 |
+
st.info("👆 Please upload both documents to begin comparison")
|
455 |
+
|
456 |
+
class NVIDIAOCRHandler:
|
457 |
+
def __init__(self):
|
458 |
+
self.api_key = NVIDIA_API_KEY
|
459 |
+
self.nvai_url = "https://ai.api.nvidia.com/v1/cv/nvidia/ocdrnet"
|
460 |
+
self.assets_url = "https://api.nvcf.nvidia.com/v2/nvcf/assets"
|
461 |
+
self.header_auth = f"Bearer {self.api_key}"
|
462 |
+
|
463 |
+
def upload_asset(self, input_data: bytes, description: str) -> uuid.UUID:
|
464 |
+
try:
|
465 |
+
with st.spinner("Uploading document to NVIDIA OCR service..."):
|
466 |
+
headers = {
|
467 |
+
"Authorization": self.header_auth,
|
468 |
+
"Content-Type": "application/json",
|
469 |
+
"accept": "application/json",
|
470 |
+
}
|
471 |
+
s3_headers = {
|
472 |
+
"x-amz-meta-nvcf-asset-description": description,
|
473 |
+
"content-type": "image/jpeg",
|
474 |
+
}
|
475 |
+
payload = {"contentType": "image/jpeg", "description": description}
|
476 |
+
|
477 |
+
response = requests.post(self.assets_url, headers=headers, json=payload, timeout=30)
|
478 |
+
response.raise_for_status()
|
479 |
+
|
480 |
+
upload_data = response.json()
|
481 |
+
response = requests.put(
|
482 |
+
upload_data["uploadUrl"],
|
483 |
+
data=input_data,
|
484 |
+
headers=s3_headers,
|
485 |
+
timeout=300,
|
486 |
+
)
|
487 |
+
response.raise_for_status()
|
488 |
+
return uuid.UUID(upload_data["assetId"])
|
489 |
+
except Exception as e:
|
490 |
+
st.error(f"Error uploading asset: {str(e)}")
|
491 |
+
raise
|
492 |
+
|
493 |
+
def process_image(self, image_path: str, output_dir: str) -> Dict[str, Any]:
|
494 |
+
try:
|
495 |
+
with st.spinner("Processing document with OCR..."):
|
496 |
+
with open(image_path, "rb") as f:
|
497 |
+
asset_id = self.upload_asset(f.read(), "Input Image")
|
498 |
+
|
499 |
+
inputs = {"image": f"{asset_id}", "render_label": False}
|
500 |
+
asset_list = f"{asset_id}"
|
501 |
+
headers = {
|
502 |
+
"Content-Type": "application/json",
|
503 |
+
"NVCF-INPUT-ASSET-REFERENCES": asset_list,
|
504 |
+
"NVCF-FUNCTION-ASSET-IDS": asset_list,
|
505 |
+
"Authorization": self.header_auth,
|
506 |
+
}
|
507 |
+
|
508 |
+
response = requests.post(self.nvai_url, headers=headers, json=inputs)
|
509 |
+
response.raise_for_status()
|
510 |
+
|
511 |
+
zip_path = f"{output_dir}.zip"
|
512 |
+
with open(zip_path, "wb") as out:
|
513 |
+
out.write(response.content)
|
514 |
+
|
515 |
+
with zipfile.ZipFile(zip_path, "r") as z:
|
516 |
+
z.extractall(output_dir)
|
517 |
+
|
518 |
+
os.remove(zip_path)
|
519 |
+
return {
|
520 |
+
"status": "success",
|
521 |
+
"output_directory": output_dir,
|
522 |
+
"files": os.listdir(output_dir)
|
523 |
+
}
|
524 |
+
except Exception as e:
|
525 |
+
st.error(f"Error processing image: {str(e)}")
|
526 |
+
raise
|
527 |
+
|
528 |
+
def save_uploaded_file(uploaded_file):
|
529 |
+
file_path = os.path.join(UPLOAD_DIR, uploaded_file.name)
|
530 |
+
with open(file_path, "wb") as f:
|
531 |
+
f.write(uploaded_file.getbuffer())
|
532 |
+
return file_path
|
533 |
+
|
534 |
+
def extract_text_pdf(file_path):
|
535 |
+
doc = fitz.open(file_path)
|
536 |
+
text = ""
|
537 |
+
for page in doc:
|
538 |
+
text += page.get_text()
|
539 |
+
return text
|
540 |
+
|
541 |
+
def extract_text_word(file_path):
|
542 |
+
doc = docx.Document(file_path)
|
543 |
+
text = "\n".join([para.text for para in doc.paragraphs])
|
544 |
+
return text
|
545 |
+
|
546 |
+
def compare_texts(text1, text2):
|
547 |
+
differ = HtmlDiff()
|
548 |
+
return differ.make_file(
|
549 |
+
text1.splitlines(),
|
550 |
+
text2.splitlines(),
|
551 |
+
fromdesc="Original",
|
552 |
+
todesc="Modified",
|
553 |
+
context=True,
|
554 |
+
numlines=2
|
555 |
+
)
|
556 |
+
|
557 |
+
def draw_bounding_box(image, vertices, confidence, is_deepfake):
|
558 |
+
img = np.array(image)
|
559 |
+
img = cv2.cvtColor(img, cv2.COLOR_RGB2BGR)
|
560 |
+
|
561 |
+
# Extract coordinates
|
562 |
+
x1, y1 = int(vertices[0]['x']), int(vertices[0]['y'])
|
563 |
+
x2, y2 = int(vertices[1]['x']), int(vertices[1]['y'])
|
564 |
+
|
565 |
+
# Calculate confidence percentages
|
566 |
+
deepfake_conf = is_deepfake * 100
|
567 |
+
bbox_conf = confidence * 100
|
568 |
+
|
569 |
+
# Choose color based on deepfake confidence (red for high confidence)
|
570 |
+
color = (0, 0, 255) if deepfake_conf > 70 else (0, 255, 0)
|
571 |
+
|
572 |
+
# Draw bounding box
|
573 |
+
cv2.rectangle(img, (x1, y1), (x2, y2), color, 2)
|
574 |
+
|
575 |
+
# Add text with confidence scores
|
576 |
+
label = f"Deepfake ({deepfake_conf:.1f}%), Face ({bbox_conf:.1f}%)"
|
577 |
+
cv2.putText(img, label, (x1, y1-10), cv2.FONT_HERSHEY_SIMPLEX, 0.5, color, 2)
|
578 |
+
|
579 |
+
# Convert back to RGB for Streamlit
|
580 |
+
return cv2.cvtColor(img, cv2.COLOR_BGR2RGB)
|
581 |
+
|
582 |
+
def process_image(image_bytes):
|
583 |
+
"""Process image through NVIDIA's deepfake detection API"""
|
584 |
+
image_b64 = base64.b64encode(image_bytes).decode()
|
585 |
+
|
586 |
+
headers = {
|
587 |
+
"Authorization": f"Bearer {NVIDIA_API_KEY}",
|
588 |
+
"Content-Type": "application/json",
|
589 |
+
"Accept": "application/json"
|
590 |
+
}
|
591 |
+
|
592 |
+
payload = {
|
593 |
+
"input": [f"data:image/png;base64,{image_b64}"]
|
594 |
+
}
|
595 |
+
|
596 |
+
try:
|
597 |
+
response = requests.post(
|
598 |
+
"https://ai.api.nvidia.com/v1/cv/hive/deepfake-image-detection",
|
599 |
+
headers=headers,
|
600 |
+
json=payload
|
601 |
+
)
|
602 |
+
response.raise_for_status()
|
603 |
+
return response.json()
|
604 |
+
except Exception as e:
|
605 |
+
st.error(f"Error processing image: {str(e)}")
|
606 |
+
return None
|
607 |
+
|
608 |
+
def main():
|
609 |
+
st.title("Deepfake Detection")
|
610 |
+
st.write("Upload an image to detect potential deepfakes")
|
611 |
+
|
612 |
+
uploaded_file = st.file_uploader("Choose an image...", type=["jpg", "jpeg", "png"])
|
613 |
+
|
614 |
+
if uploaded_file is not None:
|
615 |
+
# Display original image
|
616 |
+
image_bytes = uploaded_file.getvalue()
|
617 |
+
image = Image.open(io.BytesIO(image_bytes))
|
618 |
+
col1, col2 = st.columns(2)
|
619 |
+
|
620 |
+
with col1:
|
621 |
+
st.subheader("Original Image")
|
622 |
+
st.image(image, use_container_width=True)
|
623 |
+
|
624 |
+
# Process image
|
625 |
+
with st.spinner("Analyzing image..."):
|
626 |
+
result = process_image(image_bytes)
|
627 |
+
|
628 |
+
if result and 'data' in result:
|
629 |
+
data = result['data'][0]
|
630 |
+
|
631 |
+
# Display results
|
632 |
+
if 'bounding_boxes' in data:
|
633 |
+
for box in data['bounding_boxes']:
|
634 |
+
# Draw bounding box on image
|
635 |
+
annotated_image = draw_bounding_box(
|
636 |
+
image,
|
637 |
+
box['vertices'],
|
638 |
+
box['bbox_confidence'],
|
639 |
+
box['is_deepfake']
|
640 |
+
)
|
641 |
+
|
642 |
+
with col2:
|
643 |
+
st.subheader("Analysis Result")
|
644 |
+
st.image(annotated_image, use_container_width=True)
|
645 |
+
|
646 |
+
# Display confidence metrics
|
647 |
+
deepfake_conf = box['is_deepfake'] * 100
|
648 |
+
bbox_conf = box['bbox_confidence'] * 100
|
649 |
+
|
650 |
+
st.write("### Detection Confidence")
|
651 |
+
col3, col4 = st.columns(2)
|
652 |
+
|
653 |
+
with col3:
|
654 |
+
st.metric("Deepfake Confidence", f"{deepfake_conf:.1f}%")
|
655 |
+
st.progress(deepfake_conf/100)
|
656 |
+
|
657 |
+
with col4:
|
658 |
+
st.metric("Face Detection Confidence", f"{bbox_conf:.1f}%")
|
659 |
+
st.progress(bbox_conf/100)
|
660 |
+
|
661 |
+
if deepfake_conf > 90:
|
662 |
+
st.error("⚠️ High probability of deepfake detected!")
|
663 |
+
elif deepfake_conf > 70:
|
664 |
+
st.warning("⚠️ Moderate probability of deepfake detected!")
|
665 |
+
else:
|
666 |
+
st.success("✅ Low probability of deepfake")
|
667 |
+
|
668 |
+
# Display raw JSON data in expander
|
669 |
+
with st.expander("View Raw JSON Response"):
|
670 |
+
st.json(result)
|
671 |
+
else:
|
672 |
+
st.warning("No faces detected in the image")
|
673 |
+
else:
|
674 |
+
st.error("Failed to process image")
|
675 |
+
|
676 |
+
def calculate_similarity(text1, text2):
|
677 |
+
matcher = SequenceMatcher(None, text1, text2)
|
678 |
+
return matcher.ratio()
|
679 |
+
|
680 |
+
if __name__ == "__main__":
|
681 |
+
main()
|