Spaces:
Sleeping
Sleeping
import streamlit as st | |
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast | |
pip install sentencepiece | |
# Load the multilingual translation model and tokenizer | |
model_name = "facebook/mbart-large-50" # Choose a suitable model | |
tokenizer = MBart50TokenizerFast.from_pretrained(model_name) | |
model = MBartForConditionalGeneration.from_pretrained(model_name) | |
# Create the Streamlit app interface | |
st.title("Multilingual Translator") | |
source_text = st.text_area("Enter text to translate") | |
target_language = st.selectbox("Choose target language", tokenizer.lang_codes.keys()) | |
if st.button("Translate"): | |
translated_text = translate_text(model, tokenizer, source_text, target_language) | |
st.write("Translated text:", translated_text) | |
# Define the translation function | |
def translate_text(model, tokenizer, source_text, target_language): | |
inputs = tokenizer(source_text, return_tensors="pt") | |
outputs = model.generate(**inputs, forced_bos_token_id=tokenizer.lang_code_to_id[target_language]) | |
translated_text = tokenizer.batch_decode(outputs, skip_special_tokens=True)[0] | |
return translated_text | |
from transformers import AutoConfig, AutoModelForSeq2SeqLM, AutoTokenizer | |
model_name = "facebook/mbart-large-50" | |
AutoConfig.from_pretrained(model_name).clear_cache() | |
AutoModelForSeq2SeqLM.from_pretrained(model_name).clear_cache() | |
AutoTokenizer.from_pretrained(model_name).clear_cache() | |