File size: 27,459 Bytes
8711bb8
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
{
  "cells": [
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "_ZCogkNcQhAB"
      },
      "source": [
        "# Gaussian Maximum Likelihood\n",
        "\n",
        "##  MLE of a  Gaussian $p_{model}(x|w)$\n",
        "\n",
        "You are given an array of data points called `data`. Your course site plots the negative log-likelihood  function for several candidate hypotheses. Estimate the parameters of the Gaussian $p_{model}$ by  coding an implementation that estimates its optimal parameters (15 points) and explaining what it does (10 points). You are free to use any Gradient-based optimization method you like.  "
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "import numpy as np\n",
        "import pandas as pd\n",
        "import seaborn as sns\n",
        "import matplotlib.pyplot as plt\n",
        "\n",
        "np.random.seed(0)\n",
        "sns.set_theme(style='whitegrid', palette='pastel')\n",
        "\n",
        "import warnings\n",
        "warnings.filterwarnings('ignore')\n",
        "\n",
        "from sklearn.linear_model import LinearRegression"
      ],
      "metadata": {
        "id": "9tEZiMYncrvb"
      },
      "execution_count": 73,
      "outputs": []
    },
    {
      "cell_type": "markdown",
      "source": [
        "\n",
        "- $lnL(\\hat \\mu,\\sigma^2|Y) = {-N \\over 2} ln(2\\pi) - [\\sum_{i=1}^N{1\\over 2}ln \\sigma ^2 - {1 \\over 2 \\sigma ^2} (Y_i - \\mu)^2]$\n",
        "\n",
        "- ${\\partial ln L \\over \\partial \\mu} = {1 \\over \\sigma^2} \\sum_{i=1}^N(Y_i - \\mu)$\n",
        "\n",
        "- ${\\partial ln L \\over \\partial \\sigma ^2} = {1 \\over 2 \\sigma ^2} (-N + {1 \\over \\sigma^2} \\sum_{n=1}^N(Y_i - \\mu)^2)$"
      ],
      "metadata": {
        "id": "6y7UTqAlYqa8"
      }
    },
    {
      "cell_type": "code",
      "execution_count": 74,
      "metadata": {
        "id": "_fbYCmRRQhAF"
      },
      "outputs": [],
      "source": [
        "data = [4, 5, 7, 8, 8, 9, 10, 5, 2, 3, 5, 4, 8, 9]\n",
        "\n",
        "# This function calculates the partial derivates of a negative log-likelihood function for the mean and variance\n",
        "def gradient(mean, var, x):\n",
        "  N = len(x)\n",
        "  mean_gradient = (1 / var) * np.sum(x - mean) \n",
        "  var_gradient = (1 / (2 * var)) * (-N + (1 / var) * np.sum(np.subtract(x, mean) ** 2))\n",
        "  return mean_gradient, var_gradient\n",
        "  \n",
        "\n",
        "# Performs a gradient descent using data, starting params, learning rate, and number of iterations.\n",
        "# Each iteration changes theta partially based on the learning rate and eventually would converge towards\n",
        "# the true params.\n",
        "def gradient_descent(data, theta0, learning_rate, max_iter):\n",
        "  mean, var = theta0\n",
        "  x = np.array(data) # transform to numpy array for easier functions\n",
        "  for _ in range(max_iter): \n",
        "    g = gradient(mean, var, x)\n",
        "    \n",
        "    # update params with calculated partial derivatives\n",
        "    mean = mean + learning_rate * g[0] \n",
        "    var = var + learning_rate * g[1]\n",
        "  return mean, var"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "iterations = 1000 # number of times we want to descent\n",
        "theta = (0, 1) # (mean, var)\n",
        "alpha = 0.01 # learning rate\n",
        "\n",
        "# calculate params\n",
        "e_mean, e_var = gradient_descent(data, theta, alpha, iterations)\n",
        "mean = np.mean(data) # true mean from data\n",
        "var = np.var(data) # true variance from data\n",
        "\n",
        "print(f\"Estimated params: mean={e_mean} variance={e_var}\")\n",
        "print(f\"True params: mean={mean} variance={var}\")"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/"
        },
        "id": "9-VFAZtKpwvM",
        "outputId": "77594a4f-4c7d-4201-b56a-b0fda92c93c3"
      },
      "execution_count": 75,
      "outputs": [
        {
          "output_type": "stream",
          "name": "stdout",
          "text": [
            "Estimated params: mean=6.214285714179054 variance=5.851817293989179\n",
            "True params: mean=6.214285714285714 variance=5.882653061224489\n"
          ]
        }
      ]
    },
    {
      "cell_type": "markdown",
      "metadata": {
        "id": "SqVOZaiAQhAI"
      },
      "source": [
        "## MLE of a conditional Gaussian $p_{model}(y|x,w)$\n",
        "\n",
        "You are given a problem that involves the relationship between $x$ and $y$. Estimate the parameters of a $p_{model}$ that fit the dataset (x,y) shown below.   You are free to use any Gradient-based optimization method you like.  \n"
      ]
    },
    {
      "cell_type": "markdown",
      "source": [
        "$MSE = {1 \\over n} \\sum_{i=1}^n (y_i - \\hat y_i)^2$ \n",
        "\n",
        "- $f(m, b) = {1 \\over n} \\sum_{i=1}^n (y_i - (mx_i+b))^2$\n",
        "\n",
        "${\\partial f \\over \\partial m} = {1 \\over n} \\sum_{i=1}^n -2x_i(y_i - (mx_i+b))$\n",
        "\n",
        "${\\partial f \\over \\partial b} = {1 \\over n} \\sum_{i=1}^n -2(y_i - (mx_i+b))$\n",
        "\n"
      ],
      "metadata": {
        "id": "OIdosdhMxn3D"
      }
    },
    {
      "cell_type": "code",
      "execution_count": 76,
      "metadata": {
        "id": "4xoYaZCBQhAL"
      },
      "outputs": [],
      "source": [
        "x = np.array([8, 16, 22, 33, 50, 51])\n",
        "y = np.array([5, 20, 14, 32, 42, 58])\n",
        "\n",
        "# The goal here is to generate a p_model that is optimized for the following \n",
        "# linear regression: y = m * x + b\n",
        "# Because we are provided x and y, we can use gradient descent and mean-squared\n",
        "# error to optimize m and b. The code is attached below.\n",
        "# An additional implementation using sklearn's Linear Regression is also included.\n",
        "# y = m * x + b\n",
        "\n",
        "def conditional_gradient(x, y, m, b):\n",
        "  n = len(x)\n",
        "  m_gradient = -2 * np.sum(x * (y - (m * x + b))) / n\n",
        "  b_gradient = -2 * np.sum(y - (m * x + b)) / n\n",
        "  return m_gradient, b_gradient\n",
        " \n",
        "def conditional_gradient_descent(x, y, params, learning_rate, max_iter):\n",
        "  m, b = params\n",
        "  for _ in range(max_iter):\n",
        "    g = conditional_gradient(x, y, m, b)\n",
        "\n",
        "    m = m - learning_rate * g[0]\n",
        "    b = b + learning_rate * g[1]\n",
        "  return m, b"
      ]
    },
    {
      "cell_type": "code",
      "source": [
        "# The code below generates paramters from a self-implemented gradient descent\n",
        "# as well as through `sklearn`'s LinearRegression package. It takes the calculated\n",
        "# `m` and `b` and places them into the respective `estimate` and `actual` \n",
        "# functions\n",
        "\n",
        "params = (0, 5)\n",
        "iterations = 100\n",
        "alpha = 0.0001\n",
        "\n",
        "m, b = conditional_gradient_descent(x, y, params, alpha, iterations)\n",
        "\n",
        "def estimate(x):\n",
        "  return m * x + b\n",
        "\n",
        "model = LinearRegression()\n",
        "model.fit(x.reshape(-1, 1), y)\n",
        "\n",
        "def actual(x):\n",
        "  return model.coef_[0] * x + model.intercept_"
      ],
      "metadata": {
        "id": "Lu-6_UHKclJS"
      },
      "execution_count": 79,
      "outputs": []
    },
    {
      "cell_type": "code",
      "source": [
        "# The code below uses the previously calculated `estimate` and `actual` functions\n",
        "# to generate a graph with the original data points as well as the estimated and\n",
        "# actual lines.\n",
        "\n",
        "sns.scatterplot(x=x, y=y)\n",
        "\n",
        "start = min(x)\n",
        "end = max(x)\n",
        "\n",
        "pp1, pp2 = (start, estimate(start)), (end, estimate(end))\n",
        "ap1, ap2 = (start, actual(start)), (end, actual(end))\n",
        "\n",
        "plt.plot([pp1[0], pp2[0]], [pp1[1], pp2[1]], label='Estimated')\n",
        "plt.plot([ap1[0], ap2[0]], [ap1[1], ap2[1]], label='Actual')\n",
        "plt.legend(loc=\"upper left\")\n",
        "\n",
        "plt.show()"
      ],
      "metadata": {
        "colab": {
          "base_uri": "https://localhost:8080/",
          "height": 269
        },
        "id": "126Kj3r-gBYL",
        "outputId": "4081c5e0-2d67-46c0-ae52-4f5195fb89b5"
      },
      "execution_count": 80,
      "outputs": [
        {
          "output_type": "display_data",
          "data": {
            "text/plain": [
              "<Figure size 432x288 with 1 Axes>"
            ],
            "image/png": "iVBORw0KGgoAAAANSUhEUgAAAXQAAAD8CAYAAABn919SAAAAOXRFWHRTb2Z0d2FyZQBNYXRwbG90bGliIHZlcnNpb24zLjUuMywgaHR0cHM6Ly9tYXRwbG90bGliLm9yZy/NK7nSAAAACXBIWXMAAAsTAAALEwEAmpwYAAA0MUlEQVR4nO3de3Rcdbn/8ffcc783lyZpbm3StIGWJligIBCQlp+lrXK0/PoTj6Ky1KXHdTzlWG8UoYIBFooHuvDu8ugCxWqx0YUIlVsRbMs15NYm6SVNMrnfMzN79v7+/thJbGlKJm0yk5k8r7W6VjOZzH5mr8mnu89+9ndblFIKIYQQYc8a6gKEEELMDgl0IYSIEBLoQggRISTQhRAiQkigCyFEhJBAF0KICGEP5Eler5d7772Xf/zjH7hcLlavXs0999xDS0sLO3bsoL+/n6SkJKqqqsjPzw9ow4ZhMDIygsPhwGKxXMh7EEKIBUMphaZpxMbGYrWeeUxuCWQOfdeuXVitVr7+9a9jsVjo7u4mLS2NT37yk9x8881s3ryZp556ij179vCrX/0qoKKGhoZobGw8v3ckhBALXHFxMfHx8Wc8Nm2gj4yMcPXVV/PCCy8QGxs7+XhPTw/r16/ntddew2azoes6a9eu5ZlnniElJWXaYjweD++++y7FxcU4nc7zfEszV1NTQ1lZWdC2F05k35yb7JupyX45t7naNz6fj8bGRlauXElUVNQZ35u25XLy5EmSkpJ45JFHeO2114iNjeUrX/kKUVFRZGRkYLPZALDZbKSnp9Pe3h5QoE+0WUJxlF5TUxP0bYYL2TfnJvtmarJfzm0u981UreppA13XdU6ePMmKFSv42te+xltvvcXnP/95Hn744VkpqqysDJfLNSuvFYjDhw9TXl4etO2FE9k35yb7ZmqyX85trvaN1+s95z8U0065ZGVlYbfb2bhxIwCrVq0iOTmZqKgo3G43uq4DZvB3dnaSlZU1i6ULIYQI1LRH6CkpKaxdu5YDBw5w5ZVX0tLSQk9PD/n5+ZSWllJdXc3mzZuprq6mtLQ0oHbL+zEMg9bWVkZGRi7odc7FbrdTV1c3J68d7qxWK4ZhnHXmXAgRHgIaW/zOd77DN77xDaqqqrDb7dx///0kJCRw1113sWPHDnbv3k1CQgJVVVUXXFB3dzcWi4WSkpI5CZaRkZEzTu4Kk2EYNDc3093dTXp6eqjLEUKch4ACPTc3l//93/896/GioiKefPLJWS2ov7+f/Px8OUoMMqvVSlpaGl1dXRLoQswRpRSDHoMxTRHtsJAQZZ3V63ACCvRg0nUdh8MR6jIWJLvdjt/vD3UZQkQkpRTH+3QONHvRDbBZYV2hi7xk26yF+rw8DJYrR0ND9rsQc2fQY0yGOYBuwIFmL4MeY9a2MS8DXQghIs2YpibDfIJumI/PFgn0AFRWVrJhwwY2b948+ae1tXXK57a2tvLb3/72jMc+97nPceLEiVmrZ6ptzERJScmcTREJIaYW7bBge0/i2qzm47Nl3vXQ56sf/vCHFBcXT/u8U6dO8dvf/patW7dOPvaTn/xkVmuZahtCiPktIcrKukLXWT30hKjZO66e94He1K1xtGv2TtTpOthsYwAsXWSnKO38TsCOjY3xta99jaNHj2K32ykoKODhhx/m7rvvprW1lc2bN5OXl8cPf/hDKisreeyxxyguLubWW29l5cqVvP3225w6dYpPfvKTZGRk8Otf/5rOzk7uuOMObrzxRgD+67/+i5aWFjRNY8mSJdx7770kJiZOuY3m5mbuvfde+vr60DSNf//3f+fmm28G4JlnnuGhhx7C5XJxww03zM6OFELMiMViIS/ZRvLKqIUz5TJf/cd//MfkEgU2m40vfOELjIyM8Je//AWAgYEBAO68806qqqr4wx/+cM7X6ujo4Ne//jVdXV3ccMMNfOpTn+KJJ57g7bff5ktf+tJkoH/zm9+cvFDr+9//Pj/5yU/Yvn37Wdvw+/1s376dBx54gKKiIoaHh7n55ptZvXo1iYmJfPvb3+bxxx+nsLBw1v+3IIQInMViITHaRmL03Lz+vA/0ojTHeR9FT8W8sGjme/O9LZeTJ0/S1NTEd77zHT7wgQ9wzTXXBPxaGzZswGq1kpGRQVJSEtdffz0AK1euxO124/V6cblcPPXUU+zbtw9N0xgdHT3nWvPHjh2jqamJr371q5OPaZpGc3MzVquVFStWUFhYCMDWrVt58MEHZ/z+hRDz37wP9PkqNzeX6upqXn31VV588UW+//3vs2/fvoB+9vTFyGw22xlH/mAecb/zzjs8/vjjPPHEE6SkpLBv3z5+97vfTfl6SimSk5N56qmnzvrec889N9O3JoQIUzLlcp46Ojqw2Wxcf/31fP3rX6e3t5f+/n7i4uIYHh6+4NcfHBwkLi6OpKQkfD4fe/bsmfzee7dRUFBAVFQUe/funXysqamJ4eFhVq9eTW1tLceOHQOY9St7hRDzhxyhB+j0HjrADTfcwF//+lfAXAfl9ttvJyMjg9TUVAoKCti4cSOFhYX88Ic/PK/tXXXVVfzpT39i/fr1JCcnU1FRwTvvvAOYY4fv3cZjjz3Gvffey89+9jMMwyA1NZUf/OAHpKamcs899/D5z3+eqKgoOSkqRAQL6BZ0c2FiTd/3rodeV1dHaWnpnG1XFuc6t5GREU6cODGn+z9cybrfU5P9cm5zvR76VPeSkJaLEEJECAl0IYSIEBLoQggRISTQhRAiQkigCyFEhJBAF0KICCGBHoCBgQEuvvhidu3aNe1zn332Wd5+++0L3uaOHTv49a9/fcGvI4RYOCTQA1BdXc2qVav485//jM/ne9/nzlagCyHETM3/K0Vb34KTb83ay0WZ6+eaX+SugpxV0/7Mnj17uOOOO/jRj37Ec889x4033ojb7WbXrl2Tl9Rv3LiRFStWsH//fl555RWefPJJPv3pT2MYBs8///zkFaN/+MMfJr9uaGjgO9/5DmNjY3i9Xj7+8Y/zqU99atbeqxBiYZn/gR5i9fX19Pf3c9lll9HV1cWePXu48cYb2b59O1dffTX/8z//A0Bvby8pKSlUVlZSVlbGJz7xCYD3XUY3OzubX/7ylzidTkZGRvjYxz7GVVddRVFRUVDemxAissz/QM8J7Cg6UJ4ZXvr/+9//ns2bN2OxWLjhhhvYtWsXp06d4o033uAXv/jF5PMm1i2fUS0eD3fddRcNDQ1YLBY6Ozupr6+XQBdCnJf5H+gh5PP5qK6uxul0Ti5Nq2kaf/zjHwN+DZvNhmH8686wXq938u8PPfQQixYt4nvf+x52u53bbrvtjO8LIcRMyEnR9/Hcc89RUFDAiy++yP79+9m/fz8///nP+dOf/sQll1zCL3/5y8nn9vb2AubStkNDQ5OP5+Xl0dDQgM/nw+fzTa7QCDA0NERmZiZ2u53GxkYOHToUtPcmhIg8EujvY8+ePdx0001nPHbJJZdgGAZf/vKXef3119m4cSObNm3i97//PQCbNm2iurqazZs3s3fvXlavXs3ll1/Ohz/8YT796U+f0U75whe+wJNPPslNN93EI488wqWXXhrU9yeEiCyyfK6YJMvnnpssEzs12S/nJsvnCiGEOG8BnRStrKzE6XRO/muwfft2rrrqKt58803uvPNOvF4v2dnZPPDAA6Smps5pwUIIIaYW8JTLe+96bxgGd9xxB/fddx8VFRXs3r2bBx98kPvuu++Ci1JKYbFYLvh1xMyEqPsmxMKiDDB0sDlm/aXPu+VSU1ODy+WioqICgFtuuYWnn376gguy2WxomnbBryNmzu/3Y7fLJKsQc0Ip6DwCL/0Ynt9tfj3LAv7t3b59O0opysvL+epXv0p7ezuLFy+e/H5KSgqGYdDf309SUtJ5F5SUlITb7SY7OxurVVr8wWIYBt3d3SQmJoa6FCEiT38b1D8HPccgJgXKboQ56EIENOXS3t5OVlYWPp+P7373u4yMjPChD32IPXv28OMf/3jyeatWreKFF14IKNAnztROxWq1SpiHgGEYZ1wEJYS4ME7/KNnDDaR42tGsTtpjl9IdswRlufB8m2rKJaAj9KysLLM4p5Nt27bxhS98gU9+8pO0tbVNPqe3txer1Trjo/OpippLMmZ1brJvzk32zdRkv5yDbxT3gT1kjJ0AixWWXomj8AqWOFwsucCXfr+D4WkDfXR0FF3XiY+PRynFX/7yF0pLSykrK8Pj8XDo0CEqKip44okn2LBhwwWWKoQQYUzXoOWf0HSAdL8Xci+B4qshKj4om5820Ht6evjyl7+MrusYhkFRURE7d+7EarVy//33s3PnzjPGFoUQYsFRBrS+A43Pg2cQ0pdRa2Sy8uJrglrGtIGem5vL3r17p/zemjVr2Ldv32zXJIQQ4UEp6GoyT3gOdULiYli9BVLz8Bw+HPRyZEZNCCHOx0A71D0HPS0QkwyXfBSyVszJ9EqgJNCFEGImRvug4XloqwFnDKxYD3nlYLUF9ONev8LrVyREzf4knwS6EEIEwjcKRw/A8YOABYrWQdEV4IgK6McHxwzq3BpN3X6cdgs3r4qe9SviJdCFEOL96BocOwhHXwa/z7yDWsnVEJUw7Y8qpXAPGdR2aLT261gtUJBqZ2WmY06WN5FAF0KIqSgDTr1jtlfGJ1dYXgnx6dP+qG4o+o0Eqt/10Ddq4LLDxYsdlKTbiXbO3UWTEuhCCPFeE5Mrg25IzIJVmyEtf9of82iKxi6NBrefMbWYRKW4PN9JQZodu3XuT5ZKoAshxISBdjPIu1sgOgku+QhkrZx2cmVgzKCuQ6Opx49uQFaCjXT9GB8sKwnqyrES6EIIMdpvXhR06h1wRMOKG2BJOdjOHZFKKdoHzSA/NWD2xwvT7KzIcJAUY+Xw4ZGgLwMugS6EWLi0MXNy5dg/MSdXrjCnV95nckU3FC09fmo7NPrHFFF2WJXtoDjdQbQjtPdxkEAXQiw8uv+0yRWPOblSfDVEn3v5aI+maOjUaHBrePyQFG3higInBal2bEHojwdCAl0IsXAoZbZVGp+HsQFYtNScXEnIOOeP9I8a1Lo1mrv9GAqyE22UZjrISrDOuzurSaALIRaGrmaof9acXEnIhItvgrSCKZ+qlKJtQKe2w0/7oI7NAkvT7CzPdJAUPX/v1SCBLoSIbIMd5por3c3m5Mrqj8DiqSdX/IaipdtPrVtjYEwR7bCwOsdB8SIHUSHujwdCAl0IEZnGBsyLgk69bZ7kLP0Q5FVMObkypika3BoNnRpePyTHWFlX6CA/Zf70xwMhgS6EiCxnTK4AhZfD0nXmOOJ79I2al+W39Jj98ZwkGysyHWTEz7/+eCAk0IUQkUH3w/FDcPQl0DyQczEUX3PW5IpSilMDOrUdGh2DBnYrLFtkpzTDQcI87o8HQgJdCBHelDKXsm14Hsb6YVHR+ORK5hlP8+uKph4/dR0agx5FjMPCmhwHy9IduOzhdzQ+FQl0IUT46m6BumfNE58JmXDx/4O0wjOeMuozaHD7aejU8OmQGmPlykIn+Sk2rGHUHw+EBLoQIvwMus01V7qazJbK6i2wuOyMyZWeEZ26Dj/Hes3++JJkc348PS48++OBkEAXQoSPsQFofAFa3xqfXLke8i6dnFxRStHab/bH3UNmf7w43eyPx8/BHYLmGwl0IcT8p3mg6QC0/BNQZ02uaLqiqdvsjw95FTFOC+W5TpYtsuOMkP54ICTQhRDz1+TkysvmOGL2RebkSkwSACM+g3q3nyPj/fG0WCurc5zkJYeuP66UYtBjEJ9RyMCYTkJU8Fo8EuhCiPlHKWh7Fxr+bk6upBWakyuJWQB0D5ttleN9OpzWH18U4v64UorjfToHmr3ohhNbh4d1hS7ykm1BqUsCXQgxv3QfM9dcGWg3F826aBssKsJQitZec9nazmEDhxWWp5vrq8S75kd/fNBjjIe5+bVuwIFmL8kro0iMts359iXQhRDzw6Ab6vdD11HzBsyrNkP2RWgGHO3QqHNrDHsVcU4LFUucLF1kx2mbX/3xMU1NhvkE3TAfTzz7QtVZJ4EuhAitsUFzOdvWt8AeBcuvh/xLGfZbqT+pcaRLQ9NhUZyV8lwnuck2rPN07DDaYcFm5YxQt1kJ2o0vJNCFEKGheaDpFWh5DVBQcBksvZIun5PaFo0TvToAeSkT/fG5b1lcqIQoK+sKXZNtF5sV1hW6SAjSyKQEuhAiuAwdjh+GIy+akyuLyzCKr+GEN566oxpdwx4cNliR6aAkw07cPOmPB8JisZCXbCN5ZRTunkEyUhNkykUIEYGUgvZac3JltA9SC9CKKzniXUTdEY0Rn5c4l4VLx/vjjnnWHw+UxWIhMdrGUXczxTnlQd32jP7pe+SRRygpKaGxsRGAN998k02bNrF+/Xpuu+02enp65qRIIUSY6zkGB34Ob/wBbA5GL7mFg5n/xu+bEzl00kesy8I1y1xsuTia0kxH2IZ5qAV8hP7uu+/y5ptvkp2dDYBhGNxxxx3cd999VFRUsHv3bh588EHuu+++OStWCBFmhjrNyZXOI6ioeIaKN/K6KuFkqwKLTn6KjdIMB2lh0B8PBwEdoft8Pu6++27uuuuuycdqampwuVxUVFQAcMstt/D000/PSZFCiDDjGYS398GLP0b1nqA39xr+mn4be/uK6RhSrMxy8NFV0VxVFCVhPosCOkJ/+OGH2bRpEzk5OZOPtbe3s3jx4smvU1JSMAyD/v5+kpKSAi6gpqYm8GpnyeHDh4O+zXAh++bcZN9M7fT9YjU0MkeayRhpARQnoks4FHMlo54EnPjIsnSRpAZQnYr6ztDVHCzB/sxMG+hvvPEGNTU1bN++fU4KKCsrw+VyzclrT+Xw4cOUlwf3REW4kH1zbrJvpja5XyYmV44eAN8oPYmlvOy4ggFLIpnxVtZmOshJisFiSQ51yUEzV58Zr9d7zgPhaQP94MGDNDU1cd111wHQ0dHBZz7zGW699Vba2tomn9fb24vVap3R0bkQIsyNT66o+v1YRvvoi17CgaSr6HdmkJ9i56pMOymx0lIJlmkD/fbbb+f222+f/LqyspLHHnuMpUuX8rvf/Y5Dhw5RUVHBE088wYYNG+a0WCHEPNJznJKeV8A9wJAjjX8mfISemHyKM5xUptuJcYbP/HikOO85dKvVyv3338/OnTvxer1kZ2fzwAMPzGZtQoj5aKgLve45bF1HsFpjORB/A92JKynNcnFNqh27jByGzIwDff/+/ZN/X7NmDfv27ZvVgoQQ85RnCF/d8zja3kK3OHgr9kpORBdzaUkGVyQGZ3lY8f7kSlEhxPtSPg8j9a8Q3fpPbEqnPno1QznrWJaTiKp7g+yk7FCXKMZJoAshpqT7/fTWHyLh5MvEGWOciCphOP8aCpYsCtrqgWJmJNCFEGfw+Aw6jrxL6skXWKT30e3KwV10Hdl5udhCdFs3ERgJdCEEAP1jBq3NLWS0/p18fzvDzjR6Sj5Gal4xaVaZWAkHEuhCLGBKKdoHDY6f6CC74wXKfE347HGMLv8wcYWribNIkIcTCXQhFiDdUDT3+Gk+1Ud+zz9Y63kHZXWgLb0G59LLcNocoS5RnAcJdCEWkDFN0dip0dQ+QtHQIa4bO4QNA5VXgW3ZVdhcsaEuUVwACXQhFoC+UYM6t0ZLl5eisRo2jv0Dpz6KylqBpeRaLLEpoS5RzAIJdCEilFKKtgGd2g4/7QN+8rSjfHTsZaJ9fZCyBJZfjyVZZsgjiQS6EBHGbyiau/3UdWgMeBQ5Rhs3e14iduQUxKXBxVshfRnIlZ0RRwJdiAgx5jOo7/TT2Knh9UOuo5/r/S8T29cIrji4aCPkrAIZQYxYEuhChLneUZ26Dj8tPX4MBQVxHso9rxLd/gYWqwOKr4GCtWB3hrpUMcck0IUIQ0opTvXr1Lo1OgYN7FYoSTG4yHuYqBOvmjecWFIOyz4IMrmyYEigCxFGNH28P+7WGPQoYhwW1mTbKPHV4Gh6EbwjkFkKy6+F2NRQlyuCTAJdiDAw6jOod5v9cZ8OqbFWrip0kKc1YW3YDyM9kJwL5R+H5JzpX1BEJAl0IeaxnhGdug6Nll4dpWBJso3STAfpWhuW+ueg76R5JF7xcUgvlsmVBU4CXYh5xlCK1n4zyN1DZn98ebqd5RkO4v190LAfOurHJ1c+DDmrZXJFABLoQswbmq5oGp8fH/IqYp0WynOdLFtkx6mPwJH9cOJ1sNqh+GoouEwmV8QZJNCFCLERrzk/fmS8P54Wa+WSHCdLUmxYdQ1aXoKmf4ChjU+uXGUenQvxHhLoQoRI97BObYfG8V4dgCUpNlZkOFgUbwPDgJNvQOML4B2GzOVQcq15pacQ5yCBLkQQGUpxss8M8q5hA4cNSjPN/nicywpKgbsB6p4bn1zJgTX/Bim5oS5dhAEJdCGCwKcrjnb5qXdrDHvN+fGSdBtFaXZSY21YLBboOwX1z0LvCYhNgfKPQUaJTK6IgEmgCzGHhr0G9W6NI11+NB0WxVnJTbbR4PbT0KlztFvn6qwRsjtexNJRZ17VWfZ/IHc1WG2hLl+EGQl0IeZA15B5Wf6J8f54XoqNFZkOHDaofteDoSDKGOXioVdZ7H4bbDbzMv3Cy2VyRZw3CXQhZomhFCd6zf5494jZH1+R6WB5hp1Ylzkn3jHox6JrXDT6OivHDmJXGkeiLiJ51dWkpyWF9g2IsCeBLsQF8vkVR8b74yM+RbzLwgfynBSl2XHYTut/GwYJXW+xpfcFYowRTjiLeD32KkacKWyMjQrdGxARQwJdiPM05PlXf9xvQEa8lUvznOQk2bCefiJTKeg8AvXPETPcjScum2ccG+mwZ2OzwrpCFwlRcqWnuHAS6ELMgFKKzmGDug6Nk306WKAgxVxfJTV2ipOY/afMEcTe4+bkypp/w5VRwlqvYkxTRDssJERZzSkXIS5QQIH+xS9+kdbWVqxWKzExMXz729+mtLSUlpYWduzYQX9/P0lJSVRVVZGfnz/HJQsRfEpBS4+f2g6NnhEDpw1WZpn98RjnFEfXI73Q8HdorwVnLKy8EZZcAlYbFiAx2vwjxGwKKNCrqqqIj48H4Nlnn+Ub3/gGf/zjH9m5cyfbtm1j8+bNPPXUU9x555386le/mtOChQgmr19xpEuj0SjC3+QlIcrC2jwnhe/tj0/+wAgcfRmOHzLHDpddNT654gp+8WLBCSjQJ8IcYHh4GIvFQk9PD7W1tfziF78AYOPGjdxzzz309vaSkpIyN9UKESSDHrOt0tRt9sdj8fHBZXFkJ9mmbo/oGrS8Bk2vgN9nHo0v+yBExZ/9XCHmSMA99G9+85scOHAApRQ//elPaW9vJyMjA5vN7BvabDbS09Npb2+fUaDX1NTMvOoLdPjw4aBvM1ws5H2jFIwSTY+RwhBxZmvEMkiqtZcoixd380ncU/xQ6lgri4eP4DQ89LsyOJVUgscXB+82huBdBN9C/sxMJ9j7JuBA/+53vwvA3r17uf/++/nKV74yKwWUlZXhcgXvv6OHDx+mvLw8aNsLJwt13+iG4vj4/HjvqIHLDhelOyhJtxPjjAMWn71vlIKuo1D/HAx1QVI2lF5PUsoSkkL1RkJgoX5mAjFX+8br9Z7zQHjGUy5btmzhzjvvJDMzE7fbja7r2Gw2dF2ns7OTrKysCy5YiGDwaGZ/vN7tZ0xTJEZZuCzf7I/bre8zddLfBnXPmpMrMSmw5mbzPp4yqSJCbNpAHxkZYXBwcDKo9+/fT2JiIqmpqZSWllJdXc3mzZuprq6mtLRU+udi3hsYM6hzm/1x3YCsBCtXFDhZnHiO/viE0T5zcqXtXXDGwMoNsGSNrLki5o1pA31sbIyvfOUrjI2NYbVaSUxM5LHHHsNisXDXXXexY8cOdu/eTUJCAlVVVcGoWYgZU0rRMWRQ265xakDHaoHCVDulmQ6SY6a5qMc3Ss5gLTz/NFissPRKKLwCHDK5IuaXaQM9LS2N3/3ud1N+r6ioiCeffHLWixJituiGoqXHT12Hn74xgyg7rMp2UJzuINoxTYtE16Dln9B0gHS/F3IvMW/9JpMrYp6SK0VFRPJoisZOjfpOPx5NkRRt4fICJ4Wpdmzv1x8HUAa0vgONz4NnENKXUWtksvLia4JRuhDnTQJdRJT+MXN+vLnbj64gO9G8LD8rIYDL65WCrqbxyZVOSFwMq7dAah4eGc0TYUACXYQ9pRTtgzq1HX7aBnRsFihMM/vjSdEBLno10G5OrvQcg5hkmVwRYUkCXYQt3VA09/ip69DoHzMXulo93h+Pmq4/PmG0Dxqeh7Yac3JlxXrIK5fJFRGWJNBF2BnTFA1ujcZODY8fkmOsrCtwkB9If3yCbxSOHoDjBwELFK2DoivAIeuSi/AlgS7CRt+oQW2HRkuPH0NBTpLZH8+Mn8Hys7oGxw6aC2j5fZC7anxyJWFuixciCCTQxbymlKJtwLwsv33QwGaFpYvslGY4SAy0Pw7m5Mqpd8z2yvjkCssrIT59zmoXItgk0MW85DcUzd1mf3zAY/bHL8lxsGzRDPrjE7qazBOeQ52QmAWrNkNa/pzULUQoSaCLeWXUZ9DQ6aexU8Prh5QYK1cWOslLsQXeH58w0G6OIHa3QHQSXPIRyFopkysiYkmgi3mhd8QcOzzWa/bHc5NsrMh0kD6T/viE0X7zoqBT74AjGlbcAEvKwSYfdxHZ5BMuQkYpRWu/Tl2HRseQgd0Kxel2lmc4zu+myb6x8bsFyeSKWJgk0EXQabqiqdtPvVtj0KOIcVpYk2v2x13282iH6P7TJlc8kLMKiq+BaJlcEQuLBLoImlGfQb3b7I/7dEiNtXJVkZO8ZBvWmfbHwbxU/9T4mitjA7BoqTm5kpAx67ULEQ4k0MWc6xkxxw6P9eqgIDfZ7I8vijuP/viErmaofxYG3ZCQCRffBGkFs1u4EGFGAl3MCeO0/rh7vD++PN3O8kwH8a7z6I9PGOgYn1xpNidXVn8EFsvkihAggS5mmaYrjnaZ/fEhryLWaaEi18nSRXac59Mfn/DeyZXSD0FehUyuCHEa+W0Qs2LYa/bHj3RpaDosirNySa6TJck2rBdy9KyNmWuuHPun+XXRFeb0ikyuCHEWCXRxQbqHzf748V4dgCUpE/3xC1ytUPfD8UNw9CXQPJBz8fjkSuKFFy1EhJJAFzNmKMXJPjPIu4YNHDYozTTnx+MupD8O5uRKW4255spYPywqGp9cyZyN0oWIaBLoImC+if54h8awTxHnsnDpErM/7rDNwknJ7hZzzZXBjvHJlf8HaYUX/rpCLBAS6GJaw17ztm5Hu/xoBqTHWalY4iTnQvvjEwbd5uRKV5PZUlm9BRaXyeSKEDMkgS7OqWvIbKuc6NPBAvkpNkozHKRdaH98wtiAObnS+rZ5krP0esi7VCZXhDhP8psjzmAoxfFec368e8TAaYMVWQ6WZ9iJdV5gf3yC5oGmA9DyT0BB4eWwdJ05jiiEOG8S6AIAn1/RbaTwx7fGGPEp4l0WPpDnpChtlvrjcNrkysvmOGL2RebkSkzS7Ly+EAucBPoCN+QxqHOb/XG/SidjPMhzkmznf1n+eykFbe9Cw9/NyZW0Qlh+HSTK5IoQs0kCfQFSStE5bJ7oPNGnY7FAQYod+o5wZWnZ7G6s+5i55spAu7lo1kXbzFFEIcSsk0BfQAxDcWy8P94zavbHL8pyUJJhJ8Zp5fBh7+xtbNAN9fuh66h5A+ZVm80Wi0yuCDFnJNAXAK9fcaRTo97tZ1RTJERZWJvvpCjVjn22+uMTxgbHJ1feAnsULL8e8mVyRYhgmPa3rK+vj//+7//mxIkTOJ1O8vLyuPvuu0lJSeHNN9/kzjvvxOv1kp2dzQMPPEBqamow6o5oSikGPQZjmnlz5ISo81tmdtBjtlWauv34DchMsHJZgZPsxFnsj0/QPND0CrS8BigouAyWXglOmVwRIlimDXSLxcJnP/tZ1q5dC0BVVRUPPvggu3bt4o477uC+++6joqKC3bt38+CDD3LffffNedGRTCnF8T6dA81edANsVlhX6CIvObAQVkrhHjKo7dBo7dexWqAg1U5ppp2UmFmaHz+doZuTK0deMidXFpdBybUyuSJECEwb6ElJSZNhDrB69Woef/xxampqcLlcVFRUAHDLLbdw3XXXSaBfoEGPMRnmALoBB5q9JK+MIjH63IGsG4pjvX5qO/z0jRq47HDxYgcl6XaiZ2t+/HRKQXutObky2gepBVB6HSRmzf62hBABmVFj0zAMHn/8cSorK2lvb2fx4sWT30tJScEwDPr7+0lKSgr4NWtqamZSwqw4fPhw0LcZqPiMQnTDecZjugHunkGOupvPer5fWelTyfSqJPw4cOFlsaWXRGMQ3a2odc9s+4HsmzhvDznD9cRqA4za4zmVfCmD9jQ42ga0zWyDYWQ+f25CSfbLuQV738wo0O+55x5iYmL4xCc+wd/+9rdZKaCsrAyXyzUrrxWIw4cPU15eHrTtzdTAmI6twzN5hA5m2yUjNYHinPLTnjfeH+/xoyvISrCxItPO4sQYLJaU89r2tPtmqNOcXOk7Yk6urNhETPZFLLPMwf8A5pn5/rkJFdkv5zZX+8br9Z7zQDjgQK+qquL48eM89thjWK1WsrKyaGv719FYb28vVqt1Rkfn4mwJUVbWFbrO6qEnRFlRStE+aAb5qQGzP16YZmdFhoOkmDkMVc8gNL4AJ98Cu9O8KCj/UrA55m6bQogZCyjQH3roIWpqavjxj3+M02m2A8rKyvB4PBw6dIiKigqeeOIJNmzYMKfFLgQWi4W8ZBvJK6Mmp1xinRaauv3Udmj0jymi7LAq20FxuoNoxxzOdZ8+uaIMKPjA+ORKzNxtUwhx3qYN9CNHjvCjH/2I/Px8brnlFgBycnJ49NFHuf/++9m5c+cZY4viwlksFhKjbbjsioZOjQa3hscPSdEWrihwUpBqx2adwyA3dDh+2LxbkG/UvAlzybUQkzx32xRCXLBpA33ZsmU0NDRM+b01a9awb9++WS9qoesfNah1azR3+zEUZCfaKM10kJVwfvPoAZuYXKnfPz65km8uaSuTK0KEBbl8b55QStE2oFPn9tM2oGOzwNI0O8szHSRFB+GkY89xlve+Au4BiF8El/5fc80VuVRfiLAhgR5ifkPR0u2nzm32x6MdFlbnOChe5CBqLvvjE4a6zLsFdR7BYY2CizdBzkWwACZXhIg0EughMqYpGtwaDZ0aXj8kx1hZV+ggP2WO++MTPEPjkytvmpMrJZXU9DtYk7tq7rcthJgTEuhB1jdqXpbf0mP2x3OSbKzIdJARP8f98QmaF5rHJ1cM3Rw/XHYVOGNQcoGIEGFNAj0IlFKcGjDvz9kxaGC3wrJFdkozHCQEoz8OZnifeB2OvCiTK0JEKAn0OeTXFU09fuo6NAY9ihiHhTU5DpalO3DZg3SyUSnoqDPXXBnphZQ8c3IlafH0PyuECCsS6HNg1GfQ4PbT0Knh0yE1xsqVhU7yU2xYg9Efn9B7Auqehf5TELcILr0FFi2VyRUhIpQE+izqGdGp6/BzrNfsj+cmm/3x9Lgg9ccnDHebkyvuRnDFw8U3Qc7FMrkiRISTQL9ASila+83+uHvI7I8Xp5v98fioIAeoZ8jskZ98w1xnpeRaKFgra64IsUBIoJ8nTVc0dZv98SGvIsZpoTzXybJFdpzB6o9P8Huh+R/Q/Kp58jPvUnPNFVdscOsQQoSUBPoMjfgM6t1+joz3x9NirazOcZKXHOT+OJjhffINaHwRfCOQtcI8Ko89v+VzhRDhTQI9QN3DOnVujWO9OihYkmyur7Io2P1xMCdX3A1mn3ykF1KWwPKtkJwd3DqEEPOKBPr7MJSitU+n1q3ROWTgsMLydHN9lXhXiE4w9p6E+mehrxXi0qBiK6Qvk8kVIYQE+lQ0XXG0y1xfZdiriHNaqFjiZOkiO05biIJzuNtcBdHdAK44uGgj5KwCq0yuCCFMEuinGfaO98e7NDQdFsVZKc91kptswxqqI2DP8PjkyuvmtErxNebkit057Y/ONaUUgx5j8kYcCVEhaD8JISZJoANdw+bY4YleHYC8lIn+uC10Rfl945Mr/zBPfi6pMNdcmSeTK0opjvfpZ90qLy/ZJqEuRIgs2EA3lOJEn05dh0bXsIHDBqWZDpZn2IkLVX8cwDDMyZUjL4B3BDJLYfm1EJsaupqmMOgxJsMcQDfgQLOX5JVRJEaH8B9CIRawBRfourJS265R59YY8SniXBYuHe+PO0LVH4fTJlf2w0gPJOdC+cchOSd0Nb2PMU1NhvkE3TAfT4wOTU1CLHQLJtCHvAb1HRqNRhHGSR/p8VYuzXOSkxTC/viEvlZzzZW+k+aReMXHIb14Xk+uRDss2KycEeo2K3N702ohxPuK6EBXStE1bK4/frJPBwskWIZZV5pBWij74xOGe6BhP3TUj0+ufBhyVofF5EpClJV1ha6zeugJwV7uQAgxKSID3TDME3Z1HRrdIwZOG6zMclCSYaf+nXrS4kK8dKx3GI68BCcOg9UBxVdDwWXzYnIlUBaLhbxkG8kro2TKRYh5IqIC3edXNHZp1Lv9jPoU8S4LH8hzUpQW4v74BL8PWl6Fpn+AocGS8vHJlbhQV3ZeLBYLidE26ZkLMU9ERKAPeQzq3BpHu/z4DciMt7J2vD8+L44YDQNa3zTv4ekdhszl5porcWmhrkwIEUHCNtCVUnQOGdS6zf641QL5KXZWZNpJiZ0H/XEwJ1c6G6HuuX9Nrqz5N0jJDXVlQogIFJaB3jGoc/iEj55RA5cdLlrsoCTdToxzHp2Q6ztlrrnSe8KcXCn/GGSUzOvJFSFEeAvLQD/a5cevFJflOylMtWOfD/3xCSM9UP938z6erlgo+z+Qe0lYTK4IIcJbWAb6lUWuUJdwNu/IaZMrNlj2QSi8PKwmV4QQ4S0sA31e8fug5TVofgV0DXLXmGEeFZ6TK0KI8CWBfr4MA1rfgsbnzcmVjBJYXimTK0KIkJm2sVtVVUVlZSUlJSU0NjZOPt7S0sLWrVtZv349W7du5dixY3NZ5/yhFLgb4aUfwTvVEJ0El3/KvFxfwlwIEULTBvp1113Hb37zG7Kzz7y92c6dO9m2bRt//etf2bZtG3feeeecFTlv9J+CV/8XDv0WlGGOIF7xKRlDFELMC9MGekVFBVlZWWc81tPTQ21tLRs3bgRg48aN1NbW0tvbOzdVhtpIL7y+Bw783Lxz0Mob4YOfh6xSGUMUQswb59VDb29vJyMjA5vNvIDHZrORnp5Oe3s7KSkzu+N8TU3N+ZRwQQ4fPhzQ8+yGl8zhJhaNHkdZrLhjl+KOLcTosUDPm3NbZIgEum8WItk3U5P9cm7B3jchPylaVlaGyxW8McTDhw9TXl7+/k/SNXNypemA+fcll8CyD7I4Kp4QL+s1pwLaNwuU7JupyX45t7naN16v95wHwucV6FlZWbjdbnRdx2azoes6nZ2dZ7Vmwo4yoPVtaHgevEOQUQwllRC/KNSVCSHEtM4r0FNTUyktLaW6uprNmzdTXV1NaWnpjNst84ZS0HXUXHNluAuSsmHNRyFlSagrE0KIgE0b6Lt27eKZZ56hu7ubT3/60yQlJfHnP/+Zu+66ix07drB7924SEhKoqqoKRr2zr7/NvFtQ73GISYE1N5v38ZSTnUKIMDNtoH/rW9/iW9/61lmPFxUV8eSTT85JUUEx2gcNf4e2d8EZAys3wJI15mX7QggRhkJ+UjTYbIYP3v0rHD9khvfSK6HwCnDMw/VhhBBiBhZOoOsatPyTi7peBKVD7mrz1m9R8aGuTAghZkXkB7oyoPUdc80VzyBDrnSS1n5UJleEEBEncgNdKehqgvrnYKgTEhfD6i00HeumXMJcCBGBIjPQB9rNyZWeYxCTfObkyrHuUFcnhBBzIrICfbTPvCiorcacXFmxHvLKZXJFCLEgREag+0bh6Mvm5AoWKFoHRVeAIyrUlQkhRNCEd6DrGhw7aIa53we5q8YnVxJCXZkQQgRdeAa6MuDUO2Z7xTMI6cvMuwXFp4e6MiGECJmwC3SlFNob+3C2v40/Pgvbqk1Y0gpCXZYQQoRcWAW6UorjfTpNY8uwJeRxKmop66xR5CmFRdZeEUIscGEV6IMegwPNXnRHnvmAggPNXpJXRpEYLZMsQoiFbdpb0M0nY5pCN858TDfMx4UQYqELq0CPdliwvadim9V8XAghFrqwCvSEKCvrCl2ToW6zwrpCFwlRYfU2hBBiToRVD91isZCXbCN5ZRRjmiLaYSEhyionRIUQgjALdDBDPTHaRmJ0qCsRQoj5RXoVQggRISTQhRAiQkigCyFEhJBAF0KICBGyk6JKmRcD+Xy+oG/b6/UGfZvhQvbNucm+mZrsl3Obi30zkZkTGXo6i5rq0SAYGhqisbExFJsWQoiwV1xcTHz8mTe5D1mgG4bByMgIDodD5siFECJASik0TSM2Nhar9cyuecgCXQghxOySk6JCCBEhJNCFECJCSKALIUSEkEAXQogIIYEuhBARQgJdCCEihAS6EEJECAl0IYSIEBEb6FVVVVRWVlJSUnLGEgMtLS1s3bqV9evXs3XrVo4dOxa6IkOkr6+Pz33uc6xfv56bbrqJL33pS/T29gLw5ptvsmnTJtavX89tt91GT09PiKsNri9+8Yts2rSJLVu2sG3bNurq6gD53JzukUceOeP3aqF/ZgAqKyvZsGEDmzdvZvPmzbz00ktACPaNilAHDx5UbW1t6tprr1UNDQ2Tj996661q7969Siml9u7dq2699dZQlRgyfX196tVXX538+nvf+576+te/rnRdV9dff706ePCgUkqpRx99VO3YsSNUZYbE4ODg5N//9re/qS1btiil5HMzoaamRn3mM5+Z/L2Sz4zpvTmjlArJvonYI/SKigqysrLOeKynp4fa2lo2btwIwMaNG6mtrZ08Ol0okpKSWLt27eTXq1evpq2tjZqaGlwuFxUVFQDccsstPP3006EqMyROX+xoeHgYi8Uin5txPp+Pu+++m7vuumvyMfnMnFso9k3Y3VP0QrS3t5ORkYHNZgPAZrORnp5Oe3s7KSkpIa4uNAzD4PHHH6eyspL29nYWL148+b2UlBQMw6C/v5+kpKTQFRlk3/zmNzlw4ABKKX7605/K52bcww8/zKZNm8jJyZl8TD4z/7J9+3aUUpSXl/PVr341JPsmYo/QRWDuueceYmJi+MQnPhHqUuaN7373uzz//PP853/+J/fff3+oy5kX3njjDWpqati2bVuoS5mXfvOb3/CnP/2JPXv2oJTi7rvvDkkdCyrQs7KycLvd6LoOgK7rdHZ2ntWaWSiqqqo4fvw4P/jBD7BarWRlZdHW1jb5/d7eXqxW64I70pqwZcsWXnvtNTIzMxf85+bgwYM0NTVx3XXXUVlZSUdHB5/5zGc4fvy4fGZg8rPgdDrZtm0br7/+ekh+nxZUoKemplJaWkp1dTUA1dXVlJaWLqj/Nk946KGHqKmp4dFHH8XpdAJQVlaGx+Ph0KFDADzxxBNs2LAhlGUG1cjICO3t7ZNf79+/n8TERPncALfffjsvv/wy+/fvZ//+/WRmZvKzn/2Mz372swv6MwMwOjrK0NAQYK5V/pe//IXS0tKQ/D5F7Hrou3bt4plnnqG7u5vk5GSSkpL485//TFNTEzt27GBwcJCEhASqqqooLCwMdblBdeTIETZu3Eh+fj5RUVEA5OTk8Oijj/L666+zc+dOvF4v2dnZPPDAA6SlpYW44uDo7u7mi1/8ImNjY1itVhITE/na177GypUr5XPzHpWVlTz22GMUFxcv6M8MwMmTJ/nyl7+MrusYhkFRURHf+ta3SE9PD/q+idhAF0KIhWZBtVyEECKSSaALIUSEkEAXQogIIYEuhBARQgJdCCEihAS6EEJECAl0IYSIEP8fd9+ZJIlF0iQAAAAASUVORK5CYII=\n"
          },
          "metadata": {}
        }
      ]
    }
  ],
  "metadata": {
    "kernelspec": {
      "display_name": "Python 3",
      "language": "python",
      "name": "python3"
    },
    "language_info": {
      "name": "python",
      "version": "3.10.9"
    },
    "orig_nbformat": 4,
    "vscode": {
      "interpreter": {
        "hash": "7d6993cb2f9ce9a59d5d7380609d9cb5192a9dedd2735a011418ad9e827eb538"
      }
    },
    "colab": {
      "provenance": []
    }
  },
  "nbformat": 4,
  "nbformat_minor": 0
}