File size: 8,636 Bytes
fac9a75 4b0678e c982cf8 5f1077a 59e60e9 b1e96d2 c2115a0 5f1077a 4b0678e fac9a75 59e60e9 579432a 59e60e9 579432a 59e60e9 579432a 59e60e9 579432a 59e60e9 579432a fac9a75 c982cf8 39f86d4 5f1077a c982cf8 0bce450 5f1077a 0bce450 5f1077a 0bce450 5f1077a c982cf8 5f1077a b1e96d2 87d6c49 b1e96d2 87d6c49 b1e96d2 87d6c49 b1e96d2 c2115a0 87d6c49 c2115a0 87d6c49 c2115a0 87d6c49 c2115a0 b1e96d2 87d6c49 c2115a0 87d6c49 c2115a0 87d6c49 c2115a0 b1e96d2 59e60e9 d2ae61e b1e96d2 59e60e9 b1e96d2 59e60e9 5f1077a 579432a fac9a75 579432a fac9a75 59e60e9 5f1077a 59e60e9 5f1077a fac9a75 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 241 242 243 244 245 246 247 248 249 250 251 252 253 254 |
from pptx import Presentation
import gradio as gr
from pdf2image import convert_from_path
import pdfplumber
from docx import Document
import subprocess
import os
from typing import Optional, List
import string
import random
import re
def extract_text_from_pptx(file_path):
prs = Presentation(file_path)
text_content = []
for slide in prs.slides:
slide_text = []
for shape in slide.shapes:
if hasattr(shape, "text"):
slide_text.append(shape.text)
text_content.append("\n".join(slide_text))
return "\n\n".join(text_content)
def extract_text_from_ppt(file_path):
try:
# Convert PPT to PPTX using unoconv
pptx_file_path = os.path.splitext(file_path)[0] + ".pptx"
subprocess.run(["unoconv", "-f", "pptx", file_path], check=True)
# Extract text from PPTX
presentation = Presentation(pptx_file_path)
text_content = []
for slide in presentation.slides:
slide_text = []
for shape in slide.shapes:
if hasattr(shape, "text"):
slide_text.append(shape.text)
text_content.append("\n".join(slide_text))
# Remove the converted PPTX file
os.remove(pptx_file_path)
return "\n\n".join(text_content)
except Exception as e:
print(f"Error extracting text from PPT file: {e}")
return "Error extracting text from PPT file"
def extract_text_from_ppt_or_pptx(file_path):
if file_path.endswith(".pptx"):
return extract_text_from_pptx(file_path)
elif file_path.endswith(".ppt"):
return extract_text_from_ppt(file_path)
else:
return "Unsupported file type. Please provide a .ppt or .pptx file."
def convert_pdf_to_image(file):
images = convert_from_path(file)
return images
def extract_text_from_pdf(file):
text = ""
with pdfplumber.open(file) as pdf:
for page in pdf.pages:
text += page.extract_text() + "\n"
return text
def extract_text_from_docx(file):
text = ""
doc = Document(file.name)
for paragraph in doc.paragraphs:
text += paragraph.text + "\n"
return text
def convert_doc_to_text(doc_path):
try:
subprocess.run(
["unoconv", "--format", "txt", doc_path],
capture_output=True,
text=True,
check=True,
)
txt_file_path = doc_path.replace(".doc", ".txt")
with open(txt_file_path, "r") as f:
text = f.read()
text = text.lstrip("\ufeff")
os.remove(txt_file_path)
return text
except subprocess.CalledProcessError as e:
print(f"Error converting {doc_path} to text: {e}")
return ""
def extract_text_from_doc_or_docx(file):
if file.name.endswith(".docx"):
return extract_text_from_docx(file)
elif file.name.endswith(".doc"):
return convert_doc_to_text(file.name)
else:
return "Unsupported file type. Please upload a .doc or .docx file."
# function that generates a random string
def generate_random_string(length=23):
characters = string.ascii_letters + string.digits # Includes letters and digits
random_string = "".join(random.choice(characters) for _ in range(length))
return random_string
# function that adds the necessary json fields
def handle_json_output(json_list: list):
n = len(json_list)
for i in range(n):
# not last element
random_string1 = generate_random_string()
random_string2 = generate_random_string()
element = json_list[i]
front = element["frontText"]
back = element["backText"]
element["frontHTML"] = (
f'<div id="element-richtextarea-{random_string1}" style="position:absolute;left:100px;top:50px;width:800px;height:300px;text-align:center;display:flex;align-items:center;font-size:40px;">'
f"<p>{front}</p></div>"
)
element["backHTML"] = (
f'<div id="element-richtextarea-{random_string2}" style="position:absolute;left:100px;top:50px;width:800px;height:300px;text-align:center;display:flex;align-items:center;font-size:40px;">'
f"<p>{back}</p></div>"
)
element["termType"] = "basic"
cloze_matches = re.findall(r"_{2,}", front)
# match only the first one, if there is multiple don't do anything
if (cloze_matches != []) & (len(cloze_matches) <= 2):
# It's a cloze type card
element["termType"] = "cloze"
# inject the back in a span format into the front
def replace_cloze(match):
return f'</p><p><span class="closure">{back}</span></p><p>'
front_html = re.sub(r"_{2,}", replace_cloze, front)
element["frontHTML"] = (
f'<div id="element-richtextarea-{random_string1}" style="position:absolute;left:100px;top:50px;width:800px;height:300px;text-align:center;display:flex;align-items:center;font-size:40px;">'
f"<p>{front_html}</p></div>"
)
def replace_underscores(match):
return f" {back} "
element["frontText"] = re.sub(r"_{2,}", replace_underscores, front)
element["backText"] = ""
element["backHTML"] = (
f'<div id="element-richtextarea-{random_string2}" style="position:absolute;left:100px;top:50px;width:800px;height:300px;text-align:center;display:flex;align-items:center;font-size:40px;">'
f"<p><br></p></div>"
)
return json_list
def sanitize_list_of_lists(text: str) -> Optional[List[List]]:
left = text.find("[")
right = text.rfind("]")
text = text[left : right + 1]
try:
# Safely evaluate the string to a Python object
list_of_lists = eval(text)
if isinstance(list_of_lists, list): # Ensure it's a list
out = []
try:
# parse list of lists
for front, back in list_of_lists:
out.append({"frontText": front, "backText": back})
return handle_json_output(out)
# errors
except Exception as e:
print(e)
# return anything that was already parsed
if out != []:
return handle_json_output(out)
# original schedma is not respected
else:
return None
else:
print("The evaluated object is not a list.")
return None
except Exception as e:
print(f"Error parsing the list of lists: {e}")
return None
pdf_to_img = gr.Interface(
convert_pdf_to_image, gr.File(), gr.Gallery(), api_name="pdf_to_img"
)
pdf_to_text = gr.Interface(
extract_text_from_pdf,
gr.File(),
gr.Textbox(placeholder="Extracted text will appear here"),
api_name="pdf_to_text",
)
doc_or_docx_to_text = gr.Interface(
extract_text_from_doc_or_docx,
gr.File(),
gr.Textbox(placeholder="Extracted text from DOC or DOCX will appear here"),
api_name="doc_or_docx_to_text",
)
pptx_or_ppt_to_text = gr.Interface(
extract_text_from_ppt_or_pptx,
gr.File(),
gr.Textbox(placeholder="Extracted text from PPTX will appear here"),
api_name="pptx_or_ppt_to_text",
)
str_to_json = gr.Interface(
sanitize_list_of_lists,
gr.Text(),
gr.JSON(),
api_name="str_to_json",
examples=[
"""[
["What year was the Carthaginian Empire founded?", "Around 814 BCE"],
["Where was the center of the Carthaginian Empire located?", "Carthage, near present-day Tunis, Tunisia"],
["Which powerful ancient republic did Carthage have conflicts with?", "The Roman Republic"],
["Fill in the blank: Hannibal famously crossed the ________ with war elephants.", "Alps"],
["What were the series of conflicts between Carthage and Rome called?", "The Punic Wars"],
["Multiple Choice: What was a significant military advantage of Carthage? A) Strong infantry, B) Powerful navy, C) Fortified cities", "B) Powerful navy"],
["In what year was Carthage captured and destroyed by Rome?", "146 BCE"],
["What did Carthage excel in that allowed it to amass wealth?", "Maritime trade"]
]"""
],
)
demo = gr.TabbedInterface(
[pdf_to_img, pdf_to_text, doc_or_docx_to_text, pptx_or_ppt_to_text, str_to_json],
[
"PDF to Image",
"Extract PDF Text",
"Extract DOC/DOCX Text",
"Extract PPTX/PPT Text",
"Extract Json",
],
)
demo.launch(server_name="0.0.0.0.", server_port=7860, debug=True)
|