Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -1,13 +1,10 @@
|
|
1 |
import os
|
2 |
-
from datetime import datetime
|
3 |
import random
|
4 |
|
5 |
-
import
|
6 |
-
from huggingface_hub import HfApi, hf_hub_download, Repository, whoami
|
7 |
-
from huggingface_hub.repocard import metadata_load
|
8 |
|
9 |
import gradio as gr
|
10 |
-
from datasets import load_dataset
|
11 |
|
12 |
from data_to_parquet import to_parquet
|
13 |
|
@@ -17,12 +14,6 @@ EXAM_PASSING_SCORE = os.getenv("EXAM_PASSING_SCORE") or 0.7
|
|
17 |
|
18 |
ds = load_dataset(EXAM_DATASET_ID, split="train")
|
19 |
|
20 |
-
DATASET_REPO_URL = "https://huggingface.co/datasets/agents-course/certificates"
|
21 |
-
CERTIFIED_USERS_FILENAME = "certified_students.csv"
|
22 |
-
CERTIFIED_USERS_DIR = "certificates"
|
23 |
-
repo = Repository(
|
24 |
-
local_dir=CERTIFIED_USERS_DIR, clone_from=DATASET_REPO_URL, use_auth_token=os.getenv("HF_TOKEN")
|
25 |
-
)
|
26 |
upload_api = HfApi(token=os.getenv("HF_TOKEN"))
|
27 |
# Convert dataset to a list of dicts and randomly sort
|
28 |
quiz_data = ds.to_pandas().to_dict("records")
|
@@ -86,20 +77,28 @@ def push_results_to_hub(user_answers, token: gr.OAuthToken | None):
|
|
86 |
gr.Warning(
|
87 |
f"Score {grade:.1%} below passing threshold of {float(EXAM_PASSING_SCORE):.1%}"
|
88 |
)
|
89 |
-
return
|
90 |
|
91 |
gr.Info("Submitting answers to the Hub. Please wait...", duration=2)
|
92 |
|
93 |
user_info = whoami(token=token.token)
|
94 |
-
|
95 |
-
# TODO:
|
96 |
# check if username already has "username.parquet" in the dataset and download that (or read values directly from dataset viewer if possible)
|
97 |
# instead of replacing the values check if the new score is better than the old one
|
98 |
-
to_parquet(
|
99 |
-
|
100 |
-
|
101 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
102 |
|
|
|
|
|
|
|
103 |
|
104 |
|
105 |
def handle_quiz(question_idx, user_answers, selected_answer, is_start):
|
|
|
1 |
import os
|
|
|
2 |
import random
|
3 |
|
4 |
+
from huggingface_hub import HfApi, whoami
|
|
|
|
|
5 |
|
6 |
import gradio as gr
|
7 |
+
from datasets import load_dataset
|
8 |
|
9 |
from data_to_parquet import to_parquet
|
10 |
|
|
|
14 |
|
15 |
ds = load_dataset(EXAM_DATASET_ID, split="train")
|
16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
17 |
upload_api = HfApi(token=os.getenv("HF_TOKEN"))
|
18 |
# Convert dataset to a list of dicts and randomly sort
|
19 |
quiz_data = ds.to_pandas().to_dict("records")
|
|
|
77 |
gr.Warning(
|
78 |
f"Score {grade:.1%} below passing threshold of {float(EXAM_PASSING_SCORE):.1%}"
|
79 |
)
|
80 |
+
return # do not continue
|
81 |
|
82 |
gr.Info("Submitting answers to the Hub. Please wait...", duration=2)
|
83 |
|
84 |
user_info = whoami(token=token.token)
|
85 |
+
# TODO:
|
|
|
86 |
# check if username already has "username.parquet" in the dataset and download that (or read values directly from dataset viewer if possible)
|
87 |
# instead of replacing the values check if the new score is better than the old one
|
88 |
+
to_parquet(
|
89 |
+
upload_api, # api
|
90 |
+
"agents-course/students-data", # repo_id
|
91 |
+
user_info["name"], # username
|
92 |
+
grade, # unit1 score
|
93 |
+
0.0, # unit2 score
|
94 |
+
0.0, # unit3 score
|
95 |
+
0.0, # unit4 score
|
96 |
+
0, # already certified or not
|
97 |
+
)
|
98 |
|
99 |
+
gr.Success(
|
100 |
+
f"Your responses have been submitted to the Hub! Final grade: {grade:.1%}"
|
101 |
+
)
|
102 |
|
103 |
|
104 |
def handle_quiz(question_idx, user_answers, selected_answer, is_start):
|