Update app.py
Browse files
app.py
CHANGED
@@ -1,7 +1,7 @@
|
|
1 |
import gradio as gr
|
2 |
from gradio_imageslider import ImageSlider
|
3 |
from loadimg import load_img
|
4 |
-
import spaces
|
5 |
from transformers import AutoModelForImageSegmentation
|
6 |
import torch
|
7 |
from torchvision import transforms
|
@@ -11,7 +11,8 @@ torch.set_float32_matmul_precision(["high", "highest"][0])
|
|
11 |
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
12 |
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
13 |
)
|
14 |
-
|
|
|
15 |
transform_image = transforms.Compose(
|
16 |
[
|
17 |
transforms.Resize((1024, 1024)),
|
@@ -21,14 +22,14 @@ transform_image = transforms.Compose(
|
|
21 |
)
|
22 |
|
23 |
|
24 |
-
@spaces.GPU
|
25 |
def fn(image):
|
26 |
im = load_img(image, output_type="pil")
|
27 |
im = im.convert("RGB")
|
28 |
image_size = im.size
|
29 |
origin = im.copy()
|
30 |
image = load_img(im)
|
31 |
-
input_images = transform_image(image).unsqueeze(0).to(
|
32 |
# Prediction
|
33 |
with torch.no_grad():
|
34 |
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
|
|
1 |
import gradio as gr
|
2 |
from gradio_imageslider import ImageSlider
|
3 |
from loadimg import load_img
|
4 |
+
# import spaces
|
5 |
from transformers import AutoModelForImageSegmentation
|
6 |
import torch
|
7 |
from torchvision import transforms
|
|
|
11 |
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
12 |
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
13 |
)
|
14 |
+
device = torch.device("cuda:0" if torch.cuda.is_available() else "cpu")
|
15 |
+
birefnet.to(device)
|
16 |
transform_image = transforms.Compose(
|
17 |
[
|
18 |
transforms.Resize((1024, 1024)),
|
|
|
22 |
)
|
23 |
|
24 |
|
25 |
+
# @spaces.GPU
|
26 |
def fn(image):
|
27 |
im = load_img(image, output_type="pil")
|
28 |
im = im.convert("RGB")
|
29 |
image_size = im.size
|
30 |
origin = im.copy()
|
31 |
image = load_img(im)
|
32 |
+
input_images = transform_image(image).unsqueeze(0).to(birefnet)
|
33 |
# Prediction
|
34 |
with torch.no_grad():
|
35 |
preds = birefnet(input_images)[-1].sigmoid().cpu()
|