reset
Browse files
app.py
CHANGED
@@ -1,21 +1,19 @@
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
import torch
|
4 |
-
from loadimg import load_img
|
5 |
from torchvision import transforms
|
6 |
from transformers import AutoModelForImageSegmentation, pipeline
|
7 |
from diffusers import FluxFillPipeline
|
8 |
from PIL import Image, ImageOps
|
|
|
|
|
9 |
import numpy as np
|
10 |
from simple_lama_inpainting import SimpleLama
|
11 |
from contextlib import contextmanager
|
|
|
12 |
import gc
|
13 |
|
14 |
-
# --- Add Translation Imports ---
|
15 |
-
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
|
16 |
-
|
17 |
-
|
18 |
-
# --- Utility Functions ---
|
19 |
@contextmanager
|
20 |
def float32_high_matmul_precision():
|
21 |
torch.set_float32_matmul_precision("high")
|
@@ -25,33 +23,14 @@ def float32_high_matmul_precision():
|
|
25 |
torch.set_float32_matmul_precision("highest")
|
26 |
|
27 |
|
28 |
-
|
29 |
-
|
30 |
-
|
31 |
-
pipe = FluxFillPipeline.from_pretrained(
|
32 |
-
"black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16
|
33 |
-
).to("cuda")
|
34 |
-
|
35 |
-
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
36 |
-
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
37 |
-
).to("cuda")
|
38 |
-
|
39 |
-
simple_lama = SimpleLama() # Initialize Lama globally if used often
|
40 |
-
|
41 |
-
# --- Translation Model and Tokenizer Loading ---
|
42 |
-
translation_model_name = "facebook/mbart-large-50-many-to-many-mmt"
|
43 |
-
try:
|
44 |
-
translation_model = MBartForConditionalGeneration.from_pretrained(
|
45 |
-
translation_model_name
|
46 |
-
).to("cuda") # Move to GPU
|
47 |
-
translation_tokenizer = MBart50TokenizerFast.from_pretrained(translation_model_name)
|
48 |
-
except Exception as e:
|
49 |
-
print(f"Error loading translation model/tokenizer: {e}")
|
50 |
-
# Consider exiting or disabling the translation tab if loading fails
|
51 |
-
translation_model = None
|
52 |
-
translation_tokenizer = None
|
53 |
|
54 |
-
|
|
|
|
|
|
|
55 |
|
56 |
transform_image = transforms.Compose(
|
57 |
[
|
@@ -70,6 +49,7 @@ def prepare_image_and_mask(
|
|
70 |
padding_right=0,
|
71 |
):
|
72 |
image = load_img(image).convert("RGB")
|
|
|
73 |
background = ImageOps.expand(
|
74 |
image,
|
75 |
border=(padding_left, padding_top, padding_right, padding_bottom),
|
@@ -97,19 +77,19 @@ def outpaint(
|
|
97 |
background, mask = prepare_image_and_mask(
|
98 |
image, padding_top, padding_bottom, padding_left, padding_right
|
99 |
)
|
100 |
-
|
101 |
-
|
102 |
-
|
103 |
-
|
104 |
-
|
105 |
-
|
106 |
-
|
107 |
-
|
108 |
-
|
109 |
-
|
110 |
-
|
111 |
-
).images[0]
|
112 |
result = result.convert("RGBA")
|
|
|
113 |
return result
|
114 |
|
115 |
|
@@ -122,391 +102,275 @@ def inpaint(
|
|
122 |
):
|
123 |
background = image.convert("RGB")
|
124 |
mask = mask.convert("L")
|
125 |
-
|
126 |
-
|
127 |
-
|
128 |
-
|
129 |
-
|
130 |
-
|
131 |
-
|
132 |
-
|
133 |
-
|
134 |
-
|
135 |
-
|
136 |
-
).images[0]
|
137 |
result = result.convert("RGBA")
|
|
|
138 |
return result
|
139 |
|
140 |
|
141 |
def rmbg(image=None, url=None):
|
142 |
-
if image is None
|
143 |
-
|
144 |
-
|
145 |
-
|
146 |
-
|
147 |
-
elif image is None:
|
148 |
-
return "Please provide an image or a URL."
|
149 |
-
|
150 |
-
try:
|
151 |
-
image_pil = load_img(image).convert("RGB")
|
152 |
-
except Exception as e:
|
153 |
-
return f"Error loading image: {e}"
|
154 |
-
|
155 |
-
image_size = image_pil.size
|
156 |
-
input_images = transform_image(image_pil).unsqueeze(0).to("cuda")
|
157 |
with float32_high_matmul_precision():
|
|
|
158 |
with torch.no_grad():
|
159 |
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
160 |
pred = preds[0].squeeze()
|
161 |
pred_pil = transforms.ToPILImage()(pred)
|
162 |
mask = pred_pil.resize(image_size)
|
163 |
-
|
164 |
-
|
165 |
-
|
166 |
-
|
167 |
-
|
168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
169 |
|
170 |
|
171 |
def erase(image=None, mask=None):
|
172 |
-
|
173 |
-
|
174 |
-
|
175 |
-
|
176 |
-
|
177 |
-
|
178 |
-
|
179 |
-
|
180 |
-
|
181 |
-
|
182 |
-
|
183 |
-
|
184 |
-
|
185 |
-
|
186 |
-
|
187 |
-
#
|
188 |
-
|
189 |
-
|
190 |
-
|
191 |
-
|
192 |
-
|
193 |
-
|
194 |
-
|
195 |
-
|
196 |
-
|
197 |
-
|
198 |
-
|
199 |
-
|
200 |
-
|
201 |
-
|
202 |
-
|
203 |
-
|
204 |
-
|
205 |
-
|
206 |
-
|
207 |
-
|
208 |
-
|
209 |
-
|
210 |
-
|
211 |
-
|
212 |
-
|
213 |
-
|
214 |
-
|
215 |
-
|
216 |
-
|
217 |
-
|
218 |
-
|
219 |
-
|
220 |
-
|
221 |
-
|
222 |
-
|
223 |
-
|
224 |
-
|
225 |
-
|
226 |
-
|
227 |
-
|
228 |
-
|
229 |
-
|
230 |
-
|
231 |
-
|
232 |
-
|
233 |
-
|
234 |
-
|
235 |
-
|
236 |
-
"Ukrainian": "uk_UA",
|
237 |
-
"Urdu": "ur_PK",
|
238 |
-
"Xhosa": "xh_ZA",
|
239 |
-
"Galician": "gl_ES",
|
240 |
-
"Slovene": "sl_SI",
|
241 |
-
}
|
242 |
-
language_names = sorted(list(lang_data.keys()))
|
243 |
-
|
244 |
-
|
245 |
-
def translate_text(text_to_translate, source_language_name, target_language_name):
|
246 |
-
"""
|
247 |
-
Translates text using the loaded mBART model.
|
248 |
-
"""
|
249 |
-
if translation_model is None or translation_tokenizer is None:
|
250 |
-
return "Translation model not loaded. Cannot perform translation."
|
251 |
-
if not text_to_translate:
|
252 |
-
return "Please enter text to translate."
|
253 |
-
if not source_language_name:
|
254 |
-
return "Please select a source language."
|
255 |
-
if not target_language_name:
|
256 |
-
return "Please select a target language."
|
257 |
-
|
258 |
-
try:
|
259 |
-
source_lang_code = lang_data[source_language_name]
|
260 |
-
target_lang_code = lang_data[target_language_name]
|
261 |
-
|
262 |
-
translation_tokenizer.src_lang = source_lang_code
|
263 |
-
encoded_text = translation_tokenizer(text_to_translate, return_tensors="pt").to(
|
264 |
-
"cuda"
|
265 |
-
) # Move input to GPU
|
266 |
-
target_lang_id = translation_tokenizer.lang_code_to_id[target_lang_code]
|
267 |
-
|
268 |
-
# Generate translation on GPU
|
269 |
-
with torch.no_grad(): # Use no_grad for inference
|
270 |
-
generated_tokens = translation_model.generate(
|
271 |
-
**encoded_text, forced_bos_token_id=target_lang_id, max_length=200
|
272 |
-
)
|
273 |
-
|
274 |
-
translated_text = translation_tokenizer.batch_decode(
|
275 |
-
generated_tokens, skip_special_tokens=True
|
276 |
-
)
|
277 |
-
|
278 |
-
# Clean up GPU memory
|
279 |
-
del encoded_text, generated_tokens
|
280 |
-
torch.cuda.empty_cache()
|
281 |
-
gc.collect()
|
282 |
-
|
283 |
-
return translated_text[0]
|
284 |
-
|
285 |
-
except KeyError as e:
|
286 |
-
return f"Error: Language code not found for {e}. Check language mappings."
|
287 |
-
except Exception as e:
|
288 |
-
print(f"Translation error: {e}")
|
289 |
-
# Clean up GPU memory on error too
|
290 |
-
torch.cuda.empty_cache()
|
291 |
-
gc.collect()
|
292 |
-
return f"An error occurred during translation: {e}"
|
293 |
-
|
294 |
-
|
295 |
-
# --- Main Function Router (for image tasks) ---
|
296 |
-
# Note: Translation uses its own function directly
|
297 |
-
@spaces.GPU(duration=120) # Keep GPU decorator if needed for image tasks
|
298 |
def main(*args):
|
299 |
api_num = args[0]
|
300 |
args = args[1:]
|
301 |
-
|
302 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
303 |
|
304 |
-
result = None
|
305 |
-
try:
|
306 |
-
if api_num == 1:
|
307 |
-
result = rmbg(*args)
|
308 |
-
elif api_num == 2:
|
309 |
-
result = outpaint(*args)
|
310 |
-
elif api_num == 3:
|
311 |
-
result = inpaint(*args)
|
312 |
-
# elif api_num == 4: # Keep commented out as in original
|
313 |
-
# return mask_generation(*args)
|
314 |
-
elif api_num == 5:
|
315 |
-
result = erase(*args)
|
316 |
-
else:
|
317 |
-
result = "Invalid API number."
|
318 |
-
except Exception as e:
|
319 |
-
print(f"Error in main task routing (api_num={api_num}): {e}")
|
320 |
-
result = f"An error occurred: {e}"
|
321 |
-
finally:
|
322 |
-
# Ensure memory cleanup happens even if there's an error
|
323 |
-
gc.collect()
|
324 |
-
torch.cuda.empty_cache()
|
325 |
-
|
326 |
-
return result
|
327 |
-
|
328 |
-
|
329 |
-
# --- Define Gradio Interfaces for Each Tab ---
|
330 |
|
331 |
-
# Image Task Tabs
|
332 |
rmbg_tab = gr.Interface(
|
333 |
fn=main,
|
334 |
inputs=[
|
335 |
-
gr.Number(1, interactive=False
|
336 |
-
|
337 |
-
gr.Text(label="
|
338 |
],
|
339 |
-
outputs=
|
340 |
-
title="Remove Background",
|
341 |
-
description="Upload an image or provide a URL to remove its background.",
|
342 |
api_name="rmbg",
|
343 |
-
|
344 |
cache_examples=False,
|
|
|
345 |
)
|
346 |
|
347 |
outpaint_tab = gr.Interface(
|
348 |
fn=main,
|
349 |
inputs=[
|
350 |
-
gr.Number(2, interactive=False
|
351 |
-
gr.Image(label="
|
352 |
-
gr.Number(
|
353 |
-
gr.Number(
|
354 |
-
gr.Number(
|
355 |
-
gr.Number(
|
356 |
-
gr.Text(
|
357 |
-
|
358 |
-
|
359 |
-
),
|
360 |
-
gr.Slider(
|
361 |
-
minimum=10, maximum=100, step=1, value=28, label="Inference Steps"
|
362 |
-
), # Use slider for steps
|
363 |
-
gr.Slider(
|
364 |
-
minimum=1, maximum=100, step=1, value=50, label="Guidance Scale"
|
365 |
-
), # Use slider for guidance
|
366 |
],
|
367 |
-
outputs=
|
368 |
-
title="Outpainting",
|
369 |
-
description="Extend an image by adding padding and filling the new area using a diffusion model.",
|
370 |
api_name="outpainting",
|
371 |
-
|
372 |
cache_examples=False,
|
373 |
)
|
374 |
|
|
|
375 |
inpaint_tab = gr.Interface(
|
376 |
fn=main,
|
377 |
inputs=[
|
378 |
-
gr.Number(3, interactive=False
|
379 |
-
gr.Image(label="
|
380 |
-
gr.Image(
|
381 |
-
|
382 |
-
|
383 |
-
|
384 |
-
),
|
385 |
-
gr.Text(
|
386 |
-
label="Prompt (optional)", info="Describe what to fill the masked area with"
|
387 |
-
),
|
388 |
-
gr.Slider(minimum=10, maximum=100, step=1, value=28, label="Inference Steps"),
|
389 |
-
gr.Slider(minimum=1, maximum=100, step=1, value=50, label="Guidance Scale"),
|
390 |
],
|
391 |
-
outputs=
|
392 |
-
title="Inpainting",
|
393 |
-
description="Fill in the white areas of a mask applied to an image using a diffusion model.",
|
394 |
api_name="inpaint",
|
395 |
-
|
396 |
cache_examples=False,
|
|
|
397 |
)
|
398 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
399 |
erase_tab = gr.Interface(
|
400 |
-
|
401 |
inputs=[
|
402 |
-
gr.Number(5, interactive=False
|
403 |
-
gr.Image(
|
404 |
-
gr.Image(
|
405 |
-
|
406 |
-
|
407 |
-
|
408 |
-
|
|
|
|
|
|
|
|
|
409 |
],
|
410 |
-
outputs=gr.Image(label="Result Image", type="pil"),
|
411 |
-
title="Erase Object (LAMA)",
|
412 |
-
description="Erase objects from an image based on a mask using the LaMa inpainting model.",
|
413 |
api_name="erase",
|
414 |
-
# examples=[[5, "./assets/rocket.png", "./assets/Inpainting_mask.png"]], # Update example paths
|
415 |
cache_examples=False,
|
416 |
)
|
417 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
418 |
|
419 |
-
# --- Define Translation Tab using gr.Blocks ---
|
420 |
-
with gr.Blocks() as translation_tab:
|
421 |
-
gr.Markdown(
|
422 |
-
"""
|
423 |
-
## Multilingual Translation (mBART-50)
|
424 |
-
Translate text between 50 different languages.
|
425 |
-
Select the source and target languages, enter your text, and click Translate.
|
426 |
-
"""
|
427 |
-
)
|
428 |
-
with gr.Row():
|
429 |
-
with gr.Column(scale=1):
|
430 |
-
source_lang_dropdown = gr.Dropdown(
|
431 |
-
label="Source Language",
|
432 |
-
choices=language_names,
|
433 |
-
info="Select the language of your input text.",
|
434 |
-
)
|
435 |
-
target_lang_dropdown = gr.Dropdown(
|
436 |
-
label="Target Language",
|
437 |
-
choices=language_names,
|
438 |
-
info="Select the language you want to translate to.",
|
439 |
-
)
|
440 |
-
with gr.Column(scale=2):
|
441 |
-
input_textbox = gr.Textbox(
|
442 |
-
label="Text to Translate",
|
443 |
-
lines=6, # Increased lines
|
444 |
-
placeholder="Enter text here...",
|
445 |
-
)
|
446 |
-
translate_button = gr.Button(
|
447 |
-
"Translate", variant="primary"
|
448 |
-
) # Added variant
|
449 |
-
output_textbox = gr.Textbox(
|
450 |
-
label="Translated Text",
|
451 |
-
lines=6, # Increased lines
|
452 |
-
interactive=False, # Make output read-only
|
453 |
-
)
|
454 |
-
|
455 |
-
# Connect Components to the translation function directly
|
456 |
-
translate_button.click(
|
457 |
-
fn=translate_text,
|
458 |
-
inputs=[input_textbox, source_lang_dropdown, target_lang_dropdown],
|
459 |
-
outputs=output_textbox,
|
460 |
-
api_name="translate", # Add API name for the translation endpoint
|
461 |
-
)
|
462 |
-
|
463 |
-
# Add Translation Examples
|
464 |
-
gr.Examples(
|
465 |
-
examples=[
|
466 |
-
[
|
467 |
-
"संयुक्त राष्ट्र के प्रमुख का कहना है कि सीरिया में कोई सैन्य समाधान नहीं है",
|
468 |
-
"Hindi",
|
469 |
-
"French",
|
470 |
-
],
|
471 |
-
[
|
472 |
-
"الأمين العام للأمم المتحدة يقول إنه لا يوجد حل عسكري في سوريا.",
|
473 |
-
"Arabic",
|
474 |
-
"English",
|
475 |
-
],
|
476 |
-
[
|
477 |
-
"Le chef de l'ONU affirme qu'il n'y a pas de solution militaire en Syrie.",
|
478 |
-
"French",
|
479 |
-
"German",
|
480 |
-
],
|
481 |
-
["Hello world! How are you today?", "English", "Spanish"],
|
482 |
-
["Guten Tag!", "German", "Japanese"],
|
483 |
-
["これはテストです", "Japanese", "English"],
|
484 |
-
],
|
485 |
-
inputs=[input_textbox, source_lang_dropdown, target_lang_dropdown],
|
486 |
-
outputs=output_textbox,
|
487 |
-
fn=translate_text,
|
488 |
-
cache_examples=False,
|
489 |
-
)
|
490 |
-
|
491 |
-
# --- Combine all tabs ---
|
492 |
demo = gr.TabbedInterface(
|
493 |
[
|
494 |
rmbg_tab,
|
495 |
outpaint_tab,
|
496 |
inpaint_tab,
|
|
|
497 |
erase_tab,
|
498 |
-
|
499 |
-
# sam2_tab, # Keep commented out
|
500 |
],
|
501 |
[
|
502 |
-
"
|
503 |
-
"
|
504 |
-
"
|
505 |
-
"Erase (LAMA)", # Tab title
|
506 |
-
"Translate", # Tab title for translation
|
507 |
# "sam2",
|
|
|
|
|
508 |
],
|
509 |
-
title="
|
510 |
)
|
511 |
|
512 |
-
|
|
|
|
1 |
import gradio as gr
|
2 |
import spaces
|
3 |
import torch
|
4 |
+
from loadimg import load_img
|
5 |
from torchvision import transforms
|
6 |
from transformers import AutoModelForImageSegmentation, pipeline
|
7 |
from diffusers import FluxFillPipeline
|
8 |
from PIL import Image, ImageOps
|
9 |
+
|
10 |
+
# from sam2.sam2_image_predictor import SAM2ImagePredictor
|
11 |
import numpy as np
|
12 |
from simple_lama_inpainting import SimpleLama
|
13 |
from contextlib import contextmanager
|
14 |
+
# import whisperx
|
15 |
import gc
|
16 |
|
|
|
|
|
|
|
|
|
|
|
17 |
@contextmanager
|
18 |
def float32_high_matmul_precision():
|
19 |
torch.set_float32_matmul_precision("high")
|
|
|
23 |
torch.set_float32_matmul_precision("highest")
|
24 |
|
25 |
|
26 |
+
pipe = FluxFillPipeline.from_pretrained(
|
27 |
+
"black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16
|
28 |
+
).to("cuda")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
29 |
|
30 |
+
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
31 |
+
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
32 |
+
)
|
33 |
+
birefnet.to("cuda")
|
34 |
|
35 |
transform_image = transforms.Compose(
|
36 |
[
|
|
|
49 |
padding_right=0,
|
50 |
):
|
51 |
image = load_img(image).convert("RGB")
|
52 |
+
# expand image (left,top,right,bottom)
|
53 |
background = ImageOps.expand(
|
54 |
image,
|
55 |
border=(padding_left, padding_top, padding_right, padding_bottom),
|
|
|
77 |
background, mask = prepare_image_and_mask(
|
78 |
image, padding_top, padding_bottom, padding_left, padding_right
|
79 |
)
|
80 |
+
|
81 |
+
result = pipe(
|
82 |
+
prompt=prompt,
|
83 |
+
height=background.height,
|
84 |
+
width=background.width,
|
85 |
+
image=background,
|
86 |
+
mask_image=mask,
|
87 |
+
num_inference_steps=num_inference_steps,
|
88 |
+
guidance_scale=guidance_scale,
|
89 |
+
).images[0]
|
90 |
+
|
|
|
91 |
result = result.convert("RGBA")
|
92 |
+
|
93 |
return result
|
94 |
|
95 |
|
|
|
102 |
):
|
103 |
background = image.convert("RGB")
|
104 |
mask = mask.convert("L")
|
105 |
+
|
106 |
+
result = pipe(
|
107 |
+
prompt=prompt,
|
108 |
+
height=background.height,
|
109 |
+
width=background.width,
|
110 |
+
image=background,
|
111 |
+
mask_image=mask,
|
112 |
+
num_inference_steps=num_inference_steps,
|
113 |
+
guidance_scale=guidance_scale,
|
114 |
+
).images[0]
|
115 |
+
|
|
|
116 |
result = result.convert("RGBA")
|
117 |
+
|
118 |
return result
|
119 |
|
120 |
|
121 |
def rmbg(image=None, url=None):
|
122 |
+
if image is None:
|
123 |
+
image = url
|
124 |
+
image = load_img(image).convert("RGB")
|
125 |
+
image_size = image.size
|
126 |
+
input_images = transform_image(image).unsqueeze(0).to("cuda")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
127 |
with float32_high_matmul_precision():
|
128 |
+
# Prediction
|
129 |
with torch.no_grad():
|
130 |
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
131 |
pred = preds[0].squeeze()
|
132 |
pred_pil = transforms.ToPILImage()(pred)
|
133 |
mask = pred_pil.resize(image_size)
|
134 |
+
image.putalpha(mask)
|
135 |
+
return image
|
136 |
+
|
137 |
+
|
138 |
+
# def mask_generation(image=None, d=None):
|
139 |
+
# # use bfloat16 for the entire notebook
|
140 |
+
# # torch.autocast("cuda", dtype=torch.bfloat16).__enter__()
|
141 |
+
# # # turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
|
142 |
+
# # if torch.cuda.get_device_properties(0).major >= 8:
|
143 |
+
# # torch.backends.cuda.matmul.allow_tf32 = True
|
144 |
+
# # torch.backends.cudnn.allow_tf32 = True
|
145 |
+
# d = eval(d) # convert this to dictionary
|
146 |
+
# with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
|
147 |
+
# predictor = SAM2ImagePredictor.from_pretrained("facebook/sam2.1-hiera-large")
|
148 |
+
# predictor.set_image(image)
|
149 |
+
# input_point = np.array(d["input_points"])
|
150 |
+
# input_label = np.array(d["input_labels"])
|
151 |
+
# masks, scores, logits = predictor.predict(
|
152 |
+
# point_coords=input_point,
|
153 |
+
# point_labels=input_label,
|
154 |
+
# multimask_output=True,
|
155 |
+
# )
|
156 |
+
# sorted_ind = np.argsort(scores)[::-1]
|
157 |
+
# masks = masks[sorted_ind]
|
158 |
+
# scores = scores[sorted_ind]
|
159 |
+
# logits = logits[sorted_ind]
|
160 |
+
|
161 |
+
# out = []
|
162 |
+
# for i in range(len(masks)):
|
163 |
+
# m = Image.fromarray(masks[i] * 255).convert("L")
|
164 |
+
# comp = Image.composite(image, m, m)
|
165 |
+
# out.append((comp, f"image {i}"))
|
166 |
+
|
167 |
+
# return out
|
168 |
|
169 |
|
170 |
def erase(image=None, mask=None):
|
171 |
+
simple_lama = SimpleLama()
|
172 |
+
image = load_img(image)
|
173 |
+
mask = load_img(mask).convert("L")
|
174 |
+
return simple_lama(image, mask)
|
175 |
+
|
176 |
+
|
177 |
+
# def transcribe(audio):
|
178 |
+
# if audio is None:
|
179 |
+
# raise gr.Error("No audio file submitted!")
|
180 |
+
|
181 |
+
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
182 |
+
# compute_type = "float16"
|
183 |
+
# batch_size = 8 # reduced batch size to be conservative with memory
|
184 |
+
|
185 |
+
# try:
|
186 |
+
# # 1. Load model and transcribe
|
187 |
+
# model = whisperx.load_model("large-v2", device, compute_type=compute_type)
|
188 |
+
# audio_input = whisperx.load_audio(audio)
|
189 |
+
# result = model.transcribe(audio_input, batch_size=batch_size)
|
190 |
+
|
191 |
+
# # Clear GPU memory
|
192 |
+
# del model
|
193 |
+
# gc.collect()
|
194 |
+
# torch.cuda.empty_cache()
|
195 |
+
|
196 |
+
# # 2. Align whisper output
|
197 |
+
# model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device)
|
198 |
+
# result = whisperx.align(result["segments"], model_a, metadata, audio_input, device, return_char_alignments=False)
|
199 |
+
|
200 |
+
# # Clear GPU memory
|
201 |
+
# del model_a
|
202 |
+
# gc.collect()
|
203 |
+
# torch.cuda.empty_cache()
|
204 |
+
|
205 |
+
# # 3. Assign speaker labels
|
206 |
+
# diarize_model = whisperx.DiarizationPipeline(device=device)
|
207 |
+
# diarize_segments = diarize_model(audio_input)
|
208 |
+
|
209 |
+
# # Combine transcription with speaker diarization
|
210 |
+
# result = whisperx.assign_word_speakers(diarize_segments, result)
|
211 |
+
|
212 |
+
# # Format output with speaker labels and timestamps
|
213 |
+
# formatted_text = []
|
214 |
+
# for segment in result["segments"]:
|
215 |
+
# if not isinstance(segment, dict):
|
216 |
+
# continue
|
217 |
+
|
218 |
+
# speaker = f"[Speaker {segment.get('speaker', 'Unknown')}]"
|
219 |
+
# start_time = f"{float(segment.get('start', 0)):.2f}"
|
220 |
+
# end_time = f"{float(segment.get('end', 0)):.2f}"
|
221 |
+
# text = segment.get('text', '').strip()
|
222 |
+
# formatted_text.append(f"[{start_time}s - {end_time}s] {speaker}: {text}")
|
223 |
+
|
224 |
+
# return "\n".join(formatted_text)
|
225 |
+
|
226 |
+
# except Exception as e:
|
227 |
+
# raise gr.Error(f"Transcription failed: {str(e)}")
|
228 |
+
# finally:
|
229 |
+
# # Ensure GPU memory is cleared even if an error occurs
|
230 |
+
# gc.collect()
|
231 |
+
# torch.cuda.empty_cache()
|
232 |
+
|
233 |
+
|
234 |
+
@spaces.GPU(duration=120)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
235 |
def main(*args):
|
236 |
api_num = args[0]
|
237 |
args = args[1:]
|
238 |
+
if api_num == 1:
|
239 |
+
return rmbg(*args)
|
240 |
+
elif api_num == 2:
|
241 |
+
return outpaint(*args)
|
242 |
+
elif api_num == 3:
|
243 |
+
return inpaint(*args)
|
244 |
+
# elif api_num == 4:
|
245 |
+
# return mask_generation(*args)
|
246 |
+
elif api_num == 5:
|
247 |
+
return erase(*args)
|
248 |
+
# elif api_num == 6:
|
249 |
+
# return transcribe(*args)
|
250 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
251 |
|
|
|
252 |
rmbg_tab = gr.Interface(
|
253 |
fn=main,
|
254 |
inputs=[
|
255 |
+
gr.Number(1, interactive=False),
|
256 |
+
"image",
|
257 |
+
gr.Text("", label="url"),
|
258 |
],
|
259 |
+
outputs=["image"],
|
|
|
|
|
260 |
api_name="rmbg",
|
261 |
+
examples=[[1, "./assets/Inpainting mask.png", ""]],
|
262 |
cache_examples=False,
|
263 |
+
description="pass an image or a url of an image",
|
264 |
)
|
265 |
|
266 |
outpaint_tab = gr.Interface(
|
267 |
fn=main,
|
268 |
inputs=[
|
269 |
+
gr.Number(2, interactive=False),
|
270 |
+
gr.Image(label="image", type="pil"),
|
271 |
+
gr.Number(label="padding top"),
|
272 |
+
gr.Number(label="padding bottom"),
|
273 |
+
gr.Number(label="padding left"),
|
274 |
+
gr.Number(label="padding right"),
|
275 |
+
gr.Text(label="prompt"),
|
276 |
+
gr.Number(value=50, label="num_inference_steps"),
|
277 |
+
gr.Number(value=28, label="guidance_scale"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
278 |
],
|
279 |
+
outputs=["image"],
|
|
|
|
|
280 |
api_name="outpainting",
|
281 |
+
examples=[[2, "./assets/rocket.png", 100, 0, 0, 0, "", 50, 28]],
|
282 |
cache_examples=False,
|
283 |
)
|
284 |
|
285 |
+
|
286 |
inpaint_tab = gr.Interface(
|
287 |
fn=main,
|
288 |
inputs=[
|
289 |
+
gr.Number(3, interactive=False),
|
290 |
+
gr.Image(label="image", type="pil"),
|
291 |
+
gr.Image(label="mask", type="pil"),
|
292 |
+
gr.Text(label="prompt"),
|
293 |
+
gr.Number(value=50, label="num_inference_steps"),
|
294 |
+
gr.Number(value=28, label="guidance_scale"),
|
|
|
|
|
|
|
|
|
|
|
|
|
295 |
],
|
296 |
+
outputs=["image"],
|
|
|
|
|
297 |
api_name="inpaint",
|
298 |
+
examples=[[3, "./assets/rocket.png", "./assets/Inpainting mask.png"]],
|
299 |
cache_examples=False,
|
300 |
+
description="it is recommended that you use https://github.com/la-voliere/react-mask-editor when creating an image mask in JS and then inverse it before sending it to this space",
|
301 |
)
|
302 |
|
303 |
+
|
304 |
+
# sam2_tab = gr.Interface(
|
305 |
+
# main,
|
306 |
+
# inputs=[
|
307 |
+
# gr.Number(4, interactive=False),
|
308 |
+
# gr.Image(type="pil"),
|
309 |
+
# gr.Text(),
|
310 |
+
# ],
|
311 |
+
# outputs=gr.Gallery(),
|
312 |
+
# examples=[
|
313 |
+
# [
|
314 |
+
# 4,
|
315 |
+
# "./assets/truck.jpg",
|
316 |
+
# '{"input_points": [[500, 375], [1125, 625]], "input_labels": [1, 0]}',
|
317 |
+
# ]
|
318 |
+
# ],
|
319 |
+
# api_name="sam2",
|
320 |
+
# cache_examples=False,
|
321 |
+
# )
|
322 |
+
|
323 |
erase_tab = gr.Interface(
|
324 |
+
main,
|
325 |
inputs=[
|
326 |
+
gr.Number(5, interactive=False),
|
327 |
+
gr.Image(type="pil"),
|
328 |
+
gr.Image(type="pil"),
|
329 |
+
],
|
330 |
+
outputs=gr.Image(),
|
331 |
+
examples=[
|
332 |
+
[
|
333 |
+
5,
|
334 |
+
"./assets/rocket.png",
|
335 |
+
"./assets/Inpainting mask.png",
|
336 |
+
]
|
337 |
],
|
|
|
|
|
|
|
338 |
api_name="erase",
|
|
|
339 |
cache_examples=False,
|
340 |
)
|
341 |
|
342 |
+
transcribe_tab = gr.Interface(
|
343 |
+
fn=main,
|
344 |
+
inputs=[
|
345 |
+
gr.Number(value=6, interactive=False), # API number
|
346 |
+
gr.Audio(type="filepath", label="Audio File"),
|
347 |
+
],
|
348 |
+
outputs=gr.Textbox(label="Transcription"),
|
349 |
+
title="Audio Transcription",
|
350 |
+
description="Upload an audio file to extract text using WhisperX with speaker diarization",
|
351 |
+
api_name="transcribe",
|
352 |
+
examples=[]
|
353 |
+
)
|
354 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
355 |
demo = gr.TabbedInterface(
|
356 |
[
|
357 |
rmbg_tab,
|
358 |
outpaint_tab,
|
359 |
inpaint_tab,
|
360 |
+
# sam2_tab,
|
361 |
erase_tab,
|
362 |
+
transcribe_tab,
|
|
|
363 |
],
|
364 |
[
|
365 |
+
"remove background",
|
366 |
+
"outpainting",
|
367 |
+
"inpainting",
|
|
|
|
|
368 |
# "sam2",
|
369 |
+
"erase",
|
370 |
+
# "transcribe",
|
371 |
],
|
372 |
+
title="Utilities that require GPU",
|
373 |
)
|
374 |
|
375 |
+
|
376 |
+
demo.launch()
|