reset
Browse files
app.py
CHANGED
|
@@ -1,21 +1,19 @@
|
|
| 1 |
import gradio as gr
|
| 2 |
import spaces
|
| 3 |
import torch
|
| 4 |
-
from loadimg import load_img
|
| 5 |
from torchvision import transforms
|
| 6 |
from transformers import AutoModelForImageSegmentation, pipeline
|
| 7 |
from diffusers import FluxFillPipeline
|
| 8 |
from PIL import Image, ImageOps
|
|
|
|
|
|
|
| 9 |
import numpy as np
|
| 10 |
from simple_lama_inpainting import SimpleLama
|
| 11 |
from contextlib import contextmanager
|
|
|
|
| 12 |
import gc
|
| 13 |
|
| 14 |
-
# --- Add Translation Imports ---
|
| 15 |
-
from transformers import MBartForConditionalGeneration, MBart50TokenizerFast
|
| 16 |
-
|
| 17 |
-
|
| 18 |
-
# --- Utility Functions ---
|
| 19 |
@contextmanager
|
| 20 |
def float32_high_matmul_precision():
|
| 21 |
torch.set_float32_matmul_precision("high")
|
|
@@ -25,33 +23,14 @@ def float32_high_matmul_precision():
|
|
| 25 |
torch.set_float32_matmul_precision("highest")
|
| 26 |
|
| 27 |
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
pipe = FluxFillPipeline.from_pretrained(
|
| 32 |
-
"black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16
|
| 33 |
-
).to("cuda")
|
| 34 |
-
|
| 35 |
-
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
| 36 |
-
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
| 37 |
-
).to("cuda")
|
| 38 |
-
|
| 39 |
-
simple_lama = SimpleLama() # Initialize Lama globally if used often
|
| 40 |
-
|
| 41 |
-
# --- Translation Model and Tokenizer Loading ---
|
| 42 |
-
translation_model_name = "facebook/mbart-large-50-many-to-many-mmt"
|
| 43 |
-
try:
|
| 44 |
-
translation_model = MBartForConditionalGeneration.from_pretrained(
|
| 45 |
-
translation_model_name
|
| 46 |
-
).to("cuda") # Move to GPU
|
| 47 |
-
translation_tokenizer = MBart50TokenizerFast.from_pretrained(translation_model_name)
|
| 48 |
-
except Exception as e:
|
| 49 |
-
print(f"Error loading translation model/tokenizer: {e}")
|
| 50 |
-
# Consider exiting or disabling the translation tab if loading fails
|
| 51 |
-
translation_model = None
|
| 52 |
-
translation_tokenizer = None
|
| 53 |
|
| 54 |
-
|
|
|
|
|
|
|
|
|
|
| 55 |
|
| 56 |
transform_image = transforms.Compose(
|
| 57 |
[
|
|
@@ -70,6 +49,7 @@ def prepare_image_and_mask(
|
|
| 70 |
padding_right=0,
|
| 71 |
):
|
| 72 |
image = load_img(image).convert("RGB")
|
|
|
|
| 73 |
background = ImageOps.expand(
|
| 74 |
image,
|
| 75 |
border=(padding_left, padding_top, padding_right, padding_bottom),
|
|
@@ -97,19 +77,19 @@ def outpaint(
|
|
| 97 |
background, mask = prepare_image_and_mask(
|
| 98 |
image, padding_top, padding_bottom, padding_left, padding_right
|
| 99 |
)
|
| 100 |
-
|
| 101 |
-
|
| 102 |
-
|
| 103 |
-
|
| 104 |
-
|
| 105 |
-
|
| 106 |
-
|
| 107 |
-
|
| 108 |
-
|
| 109 |
-
|
| 110 |
-
|
| 111 |
-
).images[0]
|
| 112 |
result = result.convert("RGBA")
|
|
|
|
| 113 |
return result
|
| 114 |
|
| 115 |
|
|
@@ -122,391 +102,275 @@ def inpaint(
|
|
| 122 |
):
|
| 123 |
background = image.convert("RGB")
|
| 124 |
mask = mask.convert("L")
|
| 125 |
-
|
| 126 |
-
|
| 127 |
-
|
| 128 |
-
|
| 129 |
-
|
| 130 |
-
|
| 131 |
-
|
| 132 |
-
|
| 133 |
-
|
| 134 |
-
|
| 135 |
-
|
| 136 |
-
).images[0]
|
| 137 |
result = result.convert("RGBA")
|
|
|
|
| 138 |
return result
|
| 139 |
|
| 140 |
|
| 141 |
def rmbg(image=None, url=None):
|
| 142 |
-
if image is None
|
| 143 |
-
|
| 144 |
-
|
| 145 |
-
|
| 146 |
-
|
| 147 |
-
elif image is None:
|
| 148 |
-
return "Please provide an image or a URL."
|
| 149 |
-
|
| 150 |
-
try:
|
| 151 |
-
image_pil = load_img(image).convert("RGB")
|
| 152 |
-
except Exception as e:
|
| 153 |
-
return f"Error loading image: {e}"
|
| 154 |
-
|
| 155 |
-
image_size = image_pil.size
|
| 156 |
-
input_images = transform_image(image_pil).unsqueeze(0).to("cuda")
|
| 157 |
with float32_high_matmul_precision():
|
|
|
|
| 158 |
with torch.no_grad():
|
| 159 |
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
| 160 |
pred = preds[0].squeeze()
|
| 161 |
pred_pil = transforms.ToPILImage()(pred)
|
| 162 |
mask = pred_pil.resize(image_size)
|
| 163 |
-
|
| 164 |
-
|
| 165 |
-
|
| 166 |
-
|
| 167 |
-
|
| 168 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 169 |
|
| 170 |
|
| 171 |
def erase(image=None, mask=None):
|
| 172 |
-
|
| 173 |
-
|
| 174 |
-
|
| 175 |
-
|
| 176 |
-
|
| 177 |
-
|
| 178 |
-
|
| 179 |
-
|
| 180 |
-
|
| 181 |
-
|
| 182 |
-
|
| 183 |
-
|
| 184 |
-
|
| 185 |
-
|
| 186 |
-
|
| 187 |
-
#
|
| 188 |
-
|
| 189 |
-
|
| 190 |
-
|
| 191 |
-
|
| 192 |
-
|
| 193 |
-
|
| 194 |
-
|
| 195 |
-
|
| 196 |
-
|
| 197 |
-
|
| 198 |
-
|
| 199 |
-
|
| 200 |
-
|
| 201 |
-
|
| 202 |
-
|
| 203 |
-
|
| 204 |
-
|
| 205 |
-
|
| 206 |
-
|
| 207 |
-
|
| 208 |
-
|
| 209 |
-
|
| 210 |
-
|
| 211 |
-
|
| 212 |
-
|
| 213 |
-
|
| 214 |
-
|
| 215 |
-
|
| 216 |
-
|
| 217 |
-
|
| 218 |
-
|
| 219 |
-
|
| 220 |
-
|
| 221 |
-
|
| 222 |
-
|
| 223 |
-
|
| 224 |
-
|
| 225 |
-
|
| 226 |
-
|
| 227 |
-
|
| 228 |
-
|
| 229 |
-
|
| 230 |
-
|
| 231 |
-
|
| 232 |
-
|
| 233 |
-
|
| 234 |
-
|
| 235 |
-
|
| 236 |
-
"Ukrainian": "uk_UA",
|
| 237 |
-
"Urdu": "ur_PK",
|
| 238 |
-
"Xhosa": "xh_ZA",
|
| 239 |
-
"Galician": "gl_ES",
|
| 240 |
-
"Slovene": "sl_SI",
|
| 241 |
-
}
|
| 242 |
-
language_names = sorted(list(lang_data.keys()))
|
| 243 |
-
|
| 244 |
-
|
| 245 |
-
def translate_text(text_to_translate, source_language_name, target_language_name):
|
| 246 |
-
"""
|
| 247 |
-
Translates text using the loaded mBART model.
|
| 248 |
-
"""
|
| 249 |
-
if translation_model is None or translation_tokenizer is None:
|
| 250 |
-
return "Translation model not loaded. Cannot perform translation."
|
| 251 |
-
if not text_to_translate:
|
| 252 |
-
return "Please enter text to translate."
|
| 253 |
-
if not source_language_name:
|
| 254 |
-
return "Please select a source language."
|
| 255 |
-
if not target_language_name:
|
| 256 |
-
return "Please select a target language."
|
| 257 |
-
|
| 258 |
-
try:
|
| 259 |
-
source_lang_code = lang_data[source_language_name]
|
| 260 |
-
target_lang_code = lang_data[target_language_name]
|
| 261 |
-
|
| 262 |
-
translation_tokenizer.src_lang = source_lang_code
|
| 263 |
-
encoded_text = translation_tokenizer(text_to_translate, return_tensors="pt").to(
|
| 264 |
-
"cuda"
|
| 265 |
-
) # Move input to GPU
|
| 266 |
-
target_lang_id = translation_tokenizer.lang_code_to_id[target_lang_code]
|
| 267 |
-
|
| 268 |
-
# Generate translation on GPU
|
| 269 |
-
with torch.no_grad(): # Use no_grad for inference
|
| 270 |
-
generated_tokens = translation_model.generate(
|
| 271 |
-
**encoded_text, forced_bos_token_id=target_lang_id, max_length=200
|
| 272 |
-
)
|
| 273 |
-
|
| 274 |
-
translated_text = translation_tokenizer.batch_decode(
|
| 275 |
-
generated_tokens, skip_special_tokens=True
|
| 276 |
-
)
|
| 277 |
-
|
| 278 |
-
# Clean up GPU memory
|
| 279 |
-
del encoded_text, generated_tokens
|
| 280 |
-
torch.cuda.empty_cache()
|
| 281 |
-
gc.collect()
|
| 282 |
-
|
| 283 |
-
return translated_text[0]
|
| 284 |
-
|
| 285 |
-
except KeyError as e:
|
| 286 |
-
return f"Error: Language code not found for {e}. Check language mappings."
|
| 287 |
-
except Exception as e:
|
| 288 |
-
print(f"Translation error: {e}")
|
| 289 |
-
# Clean up GPU memory on error too
|
| 290 |
-
torch.cuda.empty_cache()
|
| 291 |
-
gc.collect()
|
| 292 |
-
return f"An error occurred during translation: {e}"
|
| 293 |
-
|
| 294 |
-
|
| 295 |
-
# --- Main Function Router (for image tasks) ---
|
| 296 |
-
# Note: Translation uses its own function directly
|
| 297 |
-
@spaces.GPU(duration=120) # Keep GPU decorator if needed for image tasks
|
| 298 |
def main(*args):
|
| 299 |
api_num = args[0]
|
| 300 |
args = args[1:]
|
| 301 |
-
|
| 302 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 303 |
|
| 304 |
-
result = None
|
| 305 |
-
try:
|
| 306 |
-
if api_num == 1:
|
| 307 |
-
result = rmbg(*args)
|
| 308 |
-
elif api_num == 2:
|
| 309 |
-
result = outpaint(*args)
|
| 310 |
-
elif api_num == 3:
|
| 311 |
-
result = inpaint(*args)
|
| 312 |
-
# elif api_num == 4: # Keep commented out as in original
|
| 313 |
-
# return mask_generation(*args)
|
| 314 |
-
elif api_num == 5:
|
| 315 |
-
result = erase(*args)
|
| 316 |
-
else:
|
| 317 |
-
result = "Invalid API number."
|
| 318 |
-
except Exception as e:
|
| 319 |
-
print(f"Error in main task routing (api_num={api_num}): {e}")
|
| 320 |
-
result = f"An error occurred: {e}"
|
| 321 |
-
finally:
|
| 322 |
-
# Ensure memory cleanup happens even if there's an error
|
| 323 |
-
gc.collect()
|
| 324 |
-
torch.cuda.empty_cache()
|
| 325 |
-
|
| 326 |
-
return result
|
| 327 |
-
|
| 328 |
-
|
| 329 |
-
# --- Define Gradio Interfaces for Each Tab ---
|
| 330 |
|
| 331 |
-
# Image Task Tabs
|
| 332 |
rmbg_tab = gr.Interface(
|
| 333 |
fn=main,
|
| 334 |
inputs=[
|
| 335 |
-
gr.Number(1, interactive=False
|
| 336 |
-
|
| 337 |
-
gr.Text(label="
|
| 338 |
],
|
| 339 |
-
outputs=
|
| 340 |
-
title="Remove Background",
|
| 341 |
-
description="Upload an image or provide a URL to remove its background.",
|
| 342 |
api_name="rmbg",
|
| 343 |
-
|
| 344 |
cache_examples=False,
|
|
|
|
| 345 |
)
|
| 346 |
|
| 347 |
outpaint_tab = gr.Interface(
|
| 348 |
fn=main,
|
| 349 |
inputs=[
|
| 350 |
-
gr.Number(2, interactive=False
|
| 351 |
-
gr.Image(label="
|
| 352 |
-
gr.Number(
|
| 353 |
-
gr.Number(
|
| 354 |
-
gr.Number(
|
| 355 |
-
gr.Number(
|
| 356 |
-
gr.Text(
|
| 357 |
-
|
| 358 |
-
|
| 359 |
-
),
|
| 360 |
-
gr.Slider(
|
| 361 |
-
minimum=10, maximum=100, step=1, value=28, label="Inference Steps"
|
| 362 |
-
), # Use slider for steps
|
| 363 |
-
gr.Slider(
|
| 364 |
-
minimum=1, maximum=100, step=1, value=50, label="Guidance Scale"
|
| 365 |
-
), # Use slider for guidance
|
| 366 |
],
|
| 367 |
-
outputs=
|
| 368 |
-
title="Outpainting",
|
| 369 |
-
description="Extend an image by adding padding and filling the new area using a diffusion model.",
|
| 370 |
api_name="outpainting",
|
| 371 |
-
|
| 372 |
cache_examples=False,
|
| 373 |
)
|
| 374 |
|
|
|
|
| 375 |
inpaint_tab = gr.Interface(
|
| 376 |
fn=main,
|
| 377 |
inputs=[
|
| 378 |
-
gr.Number(3, interactive=False
|
| 379 |
-
gr.Image(label="
|
| 380 |
-
gr.Image(
|
| 381 |
-
|
| 382 |
-
|
| 383 |
-
|
| 384 |
-
),
|
| 385 |
-
gr.Text(
|
| 386 |
-
label="Prompt (optional)", info="Describe what to fill the masked area with"
|
| 387 |
-
),
|
| 388 |
-
gr.Slider(minimum=10, maximum=100, step=1, value=28, label="Inference Steps"),
|
| 389 |
-
gr.Slider(minimum=1, maximum=100, step=1, value=50, label="Guidance Scale"),
|
| 390 |
],
|
| 391 |
-
outputs=
|
| 392 |
-
title="Inpainting",
|
| 393 |
-
description="Fill in the white areas of a mask applied to an image using a diffusion model.",
|
| 394 |
api_name="inpaint",
|
| 395 |
-
|
| 396 |
cache_examples=False,
|
|
|
|
| 397 |
)
|
| 398 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 399 |
erase_tab = gr.Interface(
|
| 400 |
-
|
| 401 |
inputs=[
|
| 402 |
-
gr.Number(5, interactive=False
|
| 403 |
-
gr.Image(
|
| 404 |
-
gr.Image(
|
| 405 |
-
|
| 406 |
-
|
| 407 |
-
|
| 408 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
| 409 |
],
|
| 410 |
-
outputs=gr.Image(label="Result Image", type="pil"),
|
| 411 |
-
title="Erase Object (LAMA)",
|
| 412 |
-
description="Erase objects from an image based on a mask using the LaMa inpainting model.",
|
| 413 |
api_name="erase",
|
| 414 |
-
# examples=[[5, "./assets/rocket.png", "./assets/Inpainting_mask.png"]], # Update example paths
|
| 415 |
cache_examples=False,
|
| 416 |
)
|
| 417 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 418 |
|
| 419 |
-
# --- Define Translation Tab using gr.Blocks ---
|
| 420 |
-
with gr.Blocks() as translation_tab:
|
| 421 |
-
gr.Markdown(
|
| 422 |
-
"""
|
| 423 |
-
## Multilingual Translation (mBART-50)
|
| 424 |
-
Translate text between 50 different languages.
|
| 425 |
-
Select the source and target languages, enter your text, and click Translate.
|
| 426 |
-
"""
|
| 427 |
-
)
|
| 428 |
-
with gr.Row():
|
| 429 |
-
with gr.Column(scale=1):
|
| 430 |
-
source_lang_dropdown = gr.Dropdown(
|
| 431 |
-
label="Source Language",
|
| 432 |
-
choices=language_names,
|
| 433 |
-
info="Select the language of your input text.",
|
| 434 |
-
)
|
| 435 |
-
target_lang_dropdown = gr.Dropdown(
|
| 436 |
-
label="Target Language",
|
| 437 |
-
choices=language_names,
|
| 438 |
-
info="Select the language you want to translate to.",
|
| 439 |
-
)
|
| 440 |
-
with gr.Column(scale=2):
|
| 441 |
-
input_textbox = gr.Textbox(
|
| 442 |
-
label="Text to Translate",
|
| 443 |
-
lines=6, # Increased lines
|
| 444 |
-
placeholder="Enter text here...",
|
| 445 |
-
)
|
| 446 |
-
translate_button = gr.Button(
|
| 447 |
-
"Translate", variant="primary"
|
| 448 |
-
) # Added variant
|
| 449 |
-
output_textbox = gr.Textbox(
|
| 450 |
-
label="Translated Text",
|
| 451 |
-
lines=6, # Increased lines
|
| 452 |
-
interactive=False, # Make output read-only
|
| 453 |
-
)
|
| 454 |
-
|
| 455 |
-
# Connect Components to the translation function directly
|
| 456 |
-
translate_button.click(
|
| 457 |
-
fn=translate_text,
|
| 458 |
-
inputs=[input_textbox, source_lang_dropdown, target_lang_dropdown],
|
| 459 |
-
outputs=output_textbox,
|
| 460 |
-
api_name="translate", # Add API name for the translation endpoint
|
| 461 |
-
)
|
| 462 |
-
|
| 463 |
-
# Add Translation Examples
|
| 464 |
-
gr.Examples(
|
| 465 |
-
examples=[
|
| 466 |
-
[
|
| 467 |
-
"संयुक्त राष्ट्र के प्रमुख का कहना है कि सीरिया में कोई सैन्य समाधान नहीं है",
|
| 468 |
-
"Hindi",
|
| 469 |
-
"French",
|
| 470 |
-
],
|
| 471 |
-
[
|
| 472 |
-
"الأمين العام للأمم المتحدة يقول إنه لا يوجد حل عسكري في سوريا.",
|
| 473 |
-
"Arabic",
|
| 474 |
-
"English",
|
| 475 |
-
],
|
| 476 |
-
[
|
| 477 |
-
"Le chef de l'ONU affirme qu'il n'y a pas de solution militaire en Syrie.",
|
| 478 |
-
"French",
|
| 479 |
-
"German",
|
| 480 |
-
],
|
| 481 |
-
["Hello world! How are you today?", "English", "Spanish"],
|
| 482 |
-
["Guten Tag!", "German", "Japanese"],
|
| 483 |
-
["これはテストです", "Japanese", "English"],
|
| 484 |
-
],
|
| 485 |
-
inputs=[input_textbox, source_lang_dropdown, target_lang_dropdown],
|
| 486 |
-
outputs=output_textbox,
|
| 487 |
-
fn=translate_text,
|
| 488 |
-
cache_examples=False,
|
| 489 |
-
)
|
| 490 |
-
|
| 491 |
-
# --- Combine all tabs ---
|
| 492 |
demo = gr.TabbedInterface(
|
| 493 |
[
|
| 494 |
rmbg_tab,
|
| 495 |
outpaint_tab,
|
| 496 |
inpaint_tab,
|
|
|
|
| 497 |
erase_tab,
|
| 498 |
-
|
| 499 |
-
# sam2_tab, # Keep commented out
|
| 500 |
],
|
| 501 |
[
|
| 502 |
-
"
|
| 503 |
-
"
|
| 504 |
-
"
|
| 505 |
-
"Erase (LAMA)", # Tab title
|
| 506 |
-
"Translate", # Tab title for translation
|
| 507 |
# "sam2",
|
|
|
|
|
|
|
| 508 |
],
|
| 509 |
-
title="
|
| 510 |
)
|
| 511 |
|
| 512 |
-
|
|
|
|
|
|
| 1 |
import gradio as gr
|
| 2 |
import spaces
|
| 3 |
import torch
|
| 4 |
+
from loadimg import load_img
|
| 5 |
from torchvision import transforms
|
| 6 |
from transformers import AutoModelForImageSegmentation, pipeline
|
| 7 |
from diffusers import FluxFillPipeline
|
| 8 |
from PIL import Image, ImageOps
|
| 9 |
+
|
| 10 |
+
# from sam2.sam2_image_predictor import SAM2ImagePredictor
|
| 11 |
import numpy as np
|
| 12 |
from simple_lama_inpainting import SimpleLama
|
| 13 |
from contextlib import contextmanager
|
| 14 |
+
# import whisperx
|
| 15 |
import gc
|
| 16 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 17 |
@contextmanager
|
| 18 |
def float32_high_matmul_precision():
|
| 19 |
torch.set_float32_matmul_precision("high")
|
|
|
|
| 23 |
torch.set_float32_matmul_precision("highest")
|
| 24 |
|
| 25 |
|
| 26 |
+
pipe = FluxFillPipeline.from_pretrained(
|
| 27 |
+
"black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16
|
| 28 |
+
).to("cuda")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 29 |
|
| 30 |
+
birefnet = AutoModelForImageSegmentation.from_pretrained(
|
| 31 |
+
"ZhengPeng7/BiRefNet", trust_remote_code=True
|
| 32 |
+
)
|
| 33 |
+
birefnet.to("cuda")
|
| 34 |
|
| 35 |
transform_image = transforms.Compose(
|
| 36 |
[
|
|
|
|
| 49 |
padding_right=0,
|
| 50 |
):
|
| 51 |
image = load_img(image).convert("RGB")
|
| 52 |
+
# expand image (left,top,right,bottom)
|
| 53 |
background = ImageOps.expand(
|
| 54 |
image,
|
| 55 |
border=(padding_left, padding_top, padding_right, padding_bottom),
|
|
|
|
| 77 |
background, mask = prepare_image_and_mask(
|
| 78 |
image, padding_top, padding_bottom, padding_left, padding_right
|
| 79 |
)
|
| 80 |
+
|
| 81 |
+
result = pipe(
|
| 82 |
+
prompt=prompt,
|
| 83 |
+
height=background.height,
|
| 84 |
+
width=background.width,
|
| 85 |
+
image=background,
|
| 86 |
+
mask_image=mask,
|
| 87 |
+
num_inference_steps=num_inference_steps,
|
| 88 |
+
guidance_scale=guidance_scale,
|
| 89 |
+
).images[0]
|
| 90 |
+
|
|
|
|
| 91 |
result = result.convert("RGBA")
|
| 92 |
+
|
| 93 |
return result
|
| 94 |
|
| 95 |
|
|
|
|
| 102 |
):
|
| 103 |
background = image.convert("RGB")
|
| 104 |
mask = mask.convert("L")
|
| 105 |
+
|
| 106 |
+
result = pipe(
|
| 107 |
+
prompt=prompt,
|
| 108 |
+
height=background.height,
|
| 109 |
+
width=background.width,
|
| 110 |
+
image=background,
|
| 111 |
+
mask_image=mask,
|
| 112 |
+
num_inference_steps=num_inference_steps,
|
| 113 |
+
guidance_scale=guidance_scale,
|
| 114 |
+
).images[0]
|
| 115 |
+
|
|
|
|
| 116 |
result = result.convert("RGBA")
|
| 117 |
+
|
| 118 |
return result
|
| 119 |
|
| 120 |
|
| 121 |
def rmbg(image=None, url=None):
|
| 122 |
+
if image is None:
|
| 123 |
+
image = url
|
| 124 |
+
image = load_img(image).convert("RGB")
|
| 125 |
+
image_size = image.size
|
| 126 |
+
input_images = transform_image(image).unsqueeze(0).to("cuda")
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 127 |
with float32_high_matmul_precision():
|
| 128 |
+
# Prediction
|
| 129 |
with torch.no_grad():
|
| 130 |
preds = birefnet(input_images)[-1].sigmoid().cpu()
|
| 131 |
pred = preds[0].squeeze()
|
| 132 |
pred_pil = transforms.ToPILImage()(pred)
|
| 133 |
mask = pred_pil.resize(image_size)
|
| 134 |
+
image.putalpha(mask)
|
| 135 |
+
return image
|
| 136 |
+
|
| 137 |
+
|
| 138 |
+
# def mask_generation(image=None, d=None):
|
| 139 |
+
# # use bfloat16 for the entire notebook
|
| 140 |
+
# # torch.autocast("cuda", dtype=torch.bfloat16).__enter__()
|
| 141 |
+
# # # turn on tfloat32 for Ampere GPUs (https://pytorch.org/docs/stable/notes/cuda.html#tensorfloat-32-tf32-on-ampere-devices)
|
| 142 |
+
# # if torch.cuda.get_device_properties(0).major >= 8:
|
| 143 |
+
# # torch.backends.cuda.matmul.allow_tf32 = True
|
| 144 |
+
# # torch.backends.cudnn.allow_tf32 = True
|
| 145 |
+
# d = eval(d) # convert this to dictionary
|
| 146 |
+
# with torch.inference_mode(), torch.autocast("cuda", dtype=torch.bfloat16):
|
| 147 |
+
# predictor = SAM2ImagePredictor.from_pretrained("facebook/sam2.1-hiera-large")
|
| 148 |
+
# predictor.set_image(image)
|
| 149 |
+
# input_point = np.array(d["input_points"])
|
| 150 |
+
# input_label = np.array(d["input_labels"])
|
| 151 |
+
# masks, scores, logits = predictor.predict(
|
| 152 |
+
# point_coords=input_point,
|
| 153 |
+
# point_labels=input_label,
|
| 154 |
+
# multimask_output=True,
|
| 155 |
+
# )
|
| 156 |
+
# sorted_ind = np.argsort(scores)[::-1]
|
| 157 |
+
# masks = masks[sorted_ind]
|
| 158 |
+
# scores = scores[sorted_ind]
|
| 159 |
+
# logits = logits[sorted_ind]
|
| 160 |
+
|
| 161 |
+
# out = []
|
| 162 |
+
# for i in range(len(masks)):
|
| 163 |
+
# m = Image.fromarray(masks[i] * 255).convert("L")
|
| 164 |
+
# comp = Image.composite(image, m, m)
|
| 165 |
+
# out.append((comp, f"image {i}"))
|
| 166 |
+
|
| 167 |
+
# return out
|
| 168 |
|
| 169 |
|
| 170 |
def erase(image=None, mask=None):
|
| 171 |
+
simple_lama = SimpleLama()
|
| 172 |
+
image = load_img(image)
|
| 173 |
+
mask = load_img(mask).convert("L")
|
| 174 |
+
return simple_lama(image, mask)
|
| 175 |
+
|
| 176 |
+
|
| 177 |
+
# def transcribe(audio):
|
| 178 |
+
# if audio is None:
|
| 179 |
+
# raise gr.Error("No audio file submitted!")
|
| 180 |
+
|
| 181 |
+
# device = "cuda" if torch.cuda.is_available() else "cpu"
|
| 182 |
+
# compute_type = "float16"
|
| 183 |
+
# batch_size = 8 # reduced batch size to be conservative with memory
|
| 184 |
+
|
| 185 |
+
# try:
|
| 186 |
+
# # 1. Load model and transcribe
|
| 187 |
+
# model = whisperx.load_model("large-v2", device, compute_type=compute_type)
|
| 188 |
+
# audio_input = whisperx.load_audio(audio)
|
| 189 |
+
# result = model.transcribe(audio_input, batch_size=batch_size)
|
| 190 |
+
|
| 191 |
+
# # Clear GPU memory
|
| 192 |
+
# del model
|
| 193 |
+
# gc.collect()
|
| 194 |
+
# torch.cuda.empty_cache()
|
| 195 |
+
|
| 196 |
+
# # 2. Align whisper output
|
| 197 |
+
# model_a, metadata = whisperx.load_align_model(language_code=result["language"], device=device)
|
| 198 |
+
# result = whisperx.align(result["segments"], model_a, metadata, audio_input, device, return_char_alignments=False)
|
| 199 |
+
|
| 200 |
+
# # Clear GPU memory
|
| 201 |
+
# del model_a
|
| 202 |
+
# gc.collect()
|
| 203 |
+
# torch.cuda.empty_cache()
|
| 204 |
+
|
| 205 |
+
# # 3. Assign speaker labels
|
| 206 |
+
# diarize_model = whisperx.DiarizationPipeline(device=device)
|
| 207 |
+
# diarize_segments = diarize_model(audio_input)
|
| 208 |
+
|
| 209 |
+
# # Combine transcription with speaker diarization
|
| 210 |
+
# result = whisperx.assign_word_speakers(diarize_segments, result)
|
| 211 |
+
|
| 212 |
+
# # Format output with speaker labels and timestamps
|
| 213 |
+
# formatted_text = []
|
| 214 |
+
# for segment in result["segments"]:
|
| 215 |
+
# if not isinstance(segment, dict):
|
| 216 |
+
# continue
|
| 217 |
+
|
| 218 |
+
# speaker = f"[Speaker {segment.get('speaker', 'Unknown')}]"
|
| 219 |
+
# start_time = f"{float(segment.get('start', 0)):.2f}"
|
| 220 |
+
# end_time = f"{float(segment.get('end', 0)):.2f}"
|
| 221 |
+
# text = segment.get('text', '').strip()
|
| 222 |
+
# formatted_text.append(f"[{start_time}s - {end_time}s] {speaker}: {text}")
|
| 223 |
+
|
| 224 |
+
# return "\n".join(formatted_text)
|
| 225 |
+
|
| 226 |
+
# except Exception as e:
|
| 227 |
+
# raise gr.Error(f"Transcription failed: {str(e)}")
|
| 228 |
+
# finally:
|
| 229 |
+
# # Ensure GPU memory is cleared even if an error occurs
|
| 230 |
+
# gc.collect()
|
| 231 |
+
# torch.cuda.empty_cache()
|
| 232 |
+
|
| 233 |
+
|
| 234 |
+
@spaces.GPU(duration=120)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 235 |
def main(*args):
|
| 236 |
api_num = args[0]
|
| 237 |
args = args[1:]
|
| 238 |
+
if api_num == 1:
|
| 239 |
+
return rmbg(*args)
|
| 240 |
+
elif api_num == 2:
|
| 241 |
+
return outpaint(*args)
|
| 242 |
+
elif api_num == 3:
|
| 243 |
+
return inpaint(*args)
|
| 244 |
+
# elif api_num == 4:
|
| 245 |
+
# return mask_generation(*args)
|
| 246 |
+
elif api_num == 5:
|
| 247 |
+
return erase(*args)
|
| 248 |
+
# elif api_num == 6:
|
| 249 |
+
# return transcribe(*args)
|
| 250 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 251 |
|
|
|
|
| 252 |
rmbg_tab = gr.Interface(
|
| 253 |
fn=main,
|
| 254 |
inputs=[
|
| 255 |
+
gr.Number(1, interactive=False),
|
| 256 |
+
"image",
|
| 257 |
+
gr.Text("", label="url"),
|
| 258 |
],
|
| 259 |
+
outputs=["image"],
|
|
|
|
|
|
|
| 260 |
api_name="rmbg",
|
| 261 |
+
examples=[[1, "./assets/Inpainting mask.png", ""]],
|
| 262 |
cache_examples=False,
|
| 263 |
+
description="pass an image or a url of an image",
|
| 264 |
)
|
| 265 |
|
| 266 |
outpaint_tab = gr.Interface(
|
| 267 |
fn=main,
|
| 268 |
inputs=[
|
| 269 |
+
gr.Number(2, interactive=False),
|
| 270 |
+
gr.Image(label="image", type="pil"),
|
| 271 |
+
gr.Number(label="padding top"),
|
| 272 |
+
gr.Number(label="padding bottom"),
|
| 273 |
+
gr.Number(label="padding left"),
|
| 274 |
+
gr.Number(label="padding right"),
|
| 275 |
+
gr.Text(label="prompt"),
|
| 276 |
+
gr.Number(value=50, label="num_inference_steps"),
|
| 277 |
+
gr.Number(value=28, label="guidance_scale"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 278 |
],
|
| 279 |
+
outputs=["image"],
|
|
|
|
|
|
|
| 280 |
api_name="outpainting",
|
| 281 |
+
examples=[[2, "./assets/rocket.png", 100, 0, 0, 0, "", 50, 28]],
|
| 282 |
cache_examples=False,
|
| 283 |
)
|
| 284 |
|
| 285 |
+
|
| 286 |
inpaint_tab = gr.Interface(
|
| 287 |
fn=main,
|
| 288 |
inputs=[
|
| 289 |
+
gr.Number(3, interactive=False),
|
| 290 |
+
gr.Image(label="image", type="pil"),
|
| 291 |
+
gr.Image(label="mask", type="pil"),
|
| 292 |
+
gr.Text(label="prompt"),
|
| 293 |
+
gr.Number(value=50, label="num_inference_steps"),
|
| 294 |
+
gr.Number(value=28, label="guidance_scale"),
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 295 |
],
|
| 296 |
+
outputs=["image"],
|
|
|
|
|
|
|
| 297 |
api_name="inpaint",
|
| 298 |
+
examples=[[3, "./assets/rocket.png", "./assets/Inpainting mask.png"]],
|
| 299 |
cache_examples=False,
|
| 300 |
+
description="it is recommended that you use https://github.com/la-voliere/react-mask-editor when creating an image mask in JS and then inverse it before sending it to this space",
|
| 301 |
)
|
| 302 |
|
| 303 |
+
|
| 304 |
+
# sam2_tab = gr.Interface(
|
| 305 |
+
# main,
|
| 306 |
+
# inputs=[
|
| 307 |
+
# gr.Number(4, interactive=False),
|
| 308 |
+
# gr.Image(type="pil"),
|
| 309 |
+
# gr.Text(),
|
| 310 |
+
# ],
|
| 311 |
+
# outputs=gr.Gallery(),
|
| 312 |
+
# examples=[
|
| 313 |
+
# [
|
| 314 |
+
# 4,
|
| 315 |
+
# "./assets/truck.jpg",
|
| 316 |
+
# '{"input_points": [[500, 375], [1125, 625]], "input_labels": [1, 0]}',
|
| 317 |
+
# ]
|
| 318 |
+
# ],
|
| 319 |
+
# api_name="sam2",
|
| 320 |
+
# cache_examples=False,
|
| 321 |
+
# )
|
| 322 |
+
|
| 323 |
erase_tab = gr.Interface(
|
| 324 |
+
main,
|
| 325 |
inputs=[
|
| 326 |
+
gr.Number(5, interactive=False),
|
| 327 |
+
gr.Image(type="pil"),
|
| 328 |
+
gr.Image(type="pil"),
|
| 329 |
+
],
|
| 330 |
+
outputs=gr.Image(),
|
| 331 |
+
examples=[
|
| 332 |
+
[
|
| 333 |
+
5,
|
| 334 |
+
"./assets/rocket.png",
|
| 335 |
+
"./assets/Inpainting mask.png",
|
| 336 |
+
]
|
| 337 |
],
|
|
|
|
|
|
|
|
|
|
| 338 |
api_name="erase",
|
|
|
|
| 339 |
cache_examples=False,
|
| 340 |
)
|
| 341 |
|
| 342 |
+
transcribe_tab = gr.Interface(
|
| 343 |
+
fn=main,
|
| 344 |
+
inputs=[
|
| 345 |
+
gr.Number(value=6, interactive=False), # API number
|
| 346 |
+
gr.Audio(type="filepath", label="Audio File"),
|
| 347 |
+
],
|
| 348 |
+
outputs=gr.Textbox(label="Transcription"),
|
| 349 |
+
title="Audio Transcription",
|
| 350 |
+
description="Upload an audio file to extract text using WhisperX with speaker diarization",
|
| 351 |
+
api_name="transcribe",
|
| 352 |
+
examples=[]
|
| 353 |
+
)
|
| 354 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 355 |
demo = gr.TabbedInterface(
|
| 356 |
[
|
| 357 |
rmbg_tab,
|
| 358 |
outpaint_tab,
|
| 359 |
inpaint_tab,
|
| 360 |
+
# sam2_tab,
|
| 361 |
erase_tab,
|
| 362 |
+
transcribe_tab,
|
|
|
|
| 363 |
],
|
| 364 |
[
|
| 365 |
+
"remove background",
|
| 366 |
+
"outpainting",
|
| 367 |
+
"inpainting",
|
|
|
|
|
|
|
| 368 |
# "sam2",
|
| 369 |
+
"erase",
|
| 370 |
+
# "transcribe",
|
| 371 |
],
|
| 372 |
+
title="Utilities that require GPU",
|
| 373 |
)
|
| 374 |
|
| 375 |
+
|
| 376 |
+
demo.launch()
|