File size: 6,704 Bytes
003d203
 
 
0e6c023
 
 
aa16383
 
 
0e6c023
 
 
 
 
 
 
 
 
 
 
 
 
 
 
003d203
aa16383
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
003d203
 
aa16383
 
e7bef73
 
0e6c023
 
 
 
 
 
 
 
 
 
 
 
aa16383
 
 
 
 
 
 
 
 
 
 
0e6c023
 
aa16383
 
94386db
0e6c023
 
003d203
0e6c023
1
2
3
4
5
6
7
8
9
10
11
12
13
14
15
16
17
18
19
20
21
22
23
24
25
26
27
28
29
30
31
32
33
34
35
36
37
38
39
40
41
42
43
44
45
46
47
48
49
50
51
52
53
54
55
56
57
58
59
60
61
62
63
64
65
66
67
68
69
70
71
72
73
74
75
76
77
78
79
80
81
82
83
84
85
86
87
88
89
90
91
92
93
94
95
96
97
98
99
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
import gradio as gr
import spaces
import torch
from loadimg import load_img
from torchvision import transforms
from transformers import AutoModelForImageSegmentation
from diffusers import FluxFillPipeline
from PIL import Image, ImageDraw
from diffusers.utils import load_image

torch.set_float32_matmul_precision(["high", "highest"][0])

birefnet = AutoModelForImageSegmentation.from_pretrained(
    "ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to("cuda")

transform_image = transforms.Compose(
    [
        transforms.Resize((1024, 1024)),
        transforms.ToTensor(),
        transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
    ]
)

pipe = FluxFillPipeline.from_pretrained(
    "black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16
).to("cuda")


def can_expand(source_width, source_height, target_width, target_height, alignment):
    if alignment in ("Left", "Right") and source_width >= target_width:
        return False
    if alignment in ("Top", "Bottom") and source_height >= target_height:
        return False
    return True


def prepare_image_and_mask(
    image,
    width,
    height,
    overlap_percentage,
    resize_percentage,
    alignment,
    overlap_left,
    overlap_right,
    overlap_top,
    overlap_bottom,
):
    target_size = (width, height)

    scale_factor = min(target_size[0] / image.width, target_size[1] / image.height)
    new_width = int(image.width * scale_factor)
    new_height = int(image.height * scale_factor)

    source = image.resize((new_width, new_height), Image.LANCZOS)

    resize_percentage = 50

    # Calculate new dimensions based on percentage
    resize_factor = resize_percentage / 100
    new_width = int(source.width * resize_factor)
    new_height = int(source.height * resize_factor)

    # Ensure minimum size of 64 pixels
    new_width = max(new_width, 64)
    new_height = max(new_height, 64)

    # Resize the image
    source = source.resize((new_width, new_height), Image.LANCZOS)

    # Calculate the overlap in pixels based on the percentage
    overlap_x = int(new_width * (overlap_percentage / 100))
    overlap_y = int(new_height * (overlap_percentage / 100))

    # Ensure minimum overlap of 1 pixel
    overlap_x = max(overlap_x, 1)
    overlap_y = max(overlap_y, 1)

    # Calculate margins based on alignment
    if alignment == "Middle":
        margin_x = (target_size[0] - new_width) // 2
        margin_y = (target_size[1] - new_height) // 2
    elif alignment == "Left":
        margin_x = 0
        margin_y = (target_size[1] - new_height) // 2
    elif alignment == "Right":
        margin_x = target_size[0] - new_width
        margin_y = (target_size[1] - new_height) // 2
    elif alignment == "Top":
        margin_x = (target_size[0] - new_width) // 2
        margin_y = 0
    elif alignment == "Bottom":
        margin_x = (target_size[0] - new_width) // 2
        margin_y = target_size[1] - new_height

    # Adjust margins to eliminate gaps
    margin_x = max(0, min(margin_x, target_size[0] - new_width))
    margin_y = max(0, min(margin_y, target_size[1] - new_height))

    # Create a new background image and paste the resized source image
    background = Image.new("RGB", target_size, (255, 255, 255))
    background.paste(source, (margin_x, margin_y))

    # Create the mask
    mask = Image.new("L", target_size, 255)
    mask_draw = ImageDraw.Draw(mask)

    # Calculate overlap areas
    white_gaps_patch = 2

    left_overlap = margin_x + overlap_x if overlap_left else margin_x + white_gaps_patch
    right_overlap = (
        margin_x + new_width - overlap_x
        if overlap_right
        else margin_x + new_width - white_gaps_patch
    )
    top_overlap = margin_y + overlap_y if overlap_top else margin_y + white_gaps_patch
    bottom_overlap = (
        margin_y + new_height - overlap_y
        if overlap_bottom
        else margin_y + new_height - white_gaps_patch
    )

    if alignment == "Left":
        left_overlap = margin_x + overlap_x if overlap_left else margin_x
    elif alignment == "Right":
        right_overlap = (
            margin_x + new_width - overlap_x if overlap_right else margin_x + new_width
        )
    elif alignment == "Top":
        top_overlap = margin_y + overlap_y if overlap_top else margin_y
    elif alignment == "Bottom":
        bottom_overlap = (
            margin_y + new_height - overlap_y
            if overlap_bottom
            else margin_y + new_height
        )

    # Draw the mask
    mask_draw.rectangle(
        [(left_overlap, top_overlap), (right_overlap, bottom_overlap)], fill=0
    )

    return background, mask


def inpaint(
    image,
    width,
    height,
    overlap_percentage,
    num_inference_steps,
    custom_resize_percentage,
    prompt_input,
    alignment,
    overlap_left,
    overlap_right,
    overlap_top,
    overlap_bottom,
    progress=gr.Progress(track_tqdm=True),
):
    background, mask = prepare_image_and_mask(
        image,
        width,
        height,
        overlap_percentage,
        custom_resize_percentage,
        alignment,
        overlap_left,
        overlap_right,
        overlap_top,
        overlap_bottom,
    )

    if not can_expand(background.width, background.height, width, height, alignment):
        alignment = "Middle"

    cnet_image = background.copy()
    cnet_image.paste(0, (0, 0), mask)

    final_prompt = prompt_input

    # generator = torch.Generator(device="cuda").manual_seed(42)

    result = pipe(
        prompt=final_prompt,
        height=height,
        width=width,
        image=cnet_image,
        mask_image=mask,
        num_inference_steps=num_inference_steps,
        guidance_scale=30,
    ).images[0]

    result = result.convert("RGBA")
    cnet_image.paste(result, (0, 0), mask)

    return cnet_image


@spaces.GPU
def rmbg(image, url):
    if image is None:
        image = url
    image = load_img(image).convert("RGB")
    image_size = image.size
    input_images = transform_image(image).unsqueeze(0).to("cuda")
    # Prediction
    with torch.no_grad():
        preds = birefnet(input_images)[-1].sigmoid().cpu()
    pred = preds[0].squeeze()
    pred_pil = transforms.ToPILImage()(pred)
    mask = pred_pil.resize(image_size)
    image.putalpha(mask)
    return image


def placeholder(img):
    return img


rmbg_tab = gr.Interface(
    fn=rmbg, inputs=["image", "text"], outputs=["image"], api_name="rmbg"
)

outpaint_tab = gr.Interface(
    fr=placeholder, inputs=["image"], outputs=["image"], api_name="outpainting"
)

demo = gr.TabbedInterface(
    [rmbg_tab, outpaint_tab],
    ["remove background", "outpainting"],
    title="Utilities that require GPU",
)


demo.launch()