File size: 6,704 Bytes
003d203 0e6c023 aa16383 0e6c023 003d203 aa16383 003d203 aa16383 e7bef73 0e6c023 aa16383 0e6c023 aa16383 94386db 0e6c023 003d203 0e6c023 |
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81 82 83 84 85 86 87 88 89 90 91 92 93 94 95 96 97 98 99 100 101 102 103 104 105 106 107 108 109 110 111 112 113 114 115 116 117 118 119 120 121 122 123 124 125 126 127 128 129 130 131 132 133 134 135 136 137 138 139 140 141 142 143 144 145 146 147 148 149 150 151 152 153 154 155 156 157 158 159 160 161 162 163 164 165 166 167 168 169 170 171 172 173 174 175 176 177 178 179 180 181 182 183 184 185 186 187 188 189 190 191 192 193 194 195 196 197 198 199 200 201 202 203 204 205 206 207 208 209 210 211 212 213 214 215 216 217 218 219 220 221 222 223 224 225 226 227 228 229 230 231 232 233 234 235 236 237 238 239 240 |
import gradio as gr
import spaces
import torch
from loadimg import load_img
from torchvision import transforms
from transformers import AutoModelForImageSegmentation
from diffusers import FluxFillPipeline
from PIL import Image, ImageDraw
from diffusers.utils import load_image
torch.set_float32_matmul_precision(["high", "highest"][0])
birefnet = AutoModelForImageSegmentation.from_pretrained(
"ZhengPeng7/BiRefNet", trust_remote_code=True
)
birefnet.to("cuda")
transform_image = transforms.Compose(
[
transforms.Resize((1024, 1024)),
transforms.ToTensor(),
transforms.Normalize([0.485, 0.456, 0.406], [0.229, 0.224, 0.225]),
]
)
pipe = FluxFillPipeline.from_pretrained(
"black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16
).to("cuda")
def can_expand(source_width, source_height, target_width, target_height, alignment):
if alignment in ("Left", "Right") and source_width >= target_width:
return False
if alignment in ("Top", "Bottom") and source_height >= target_height:
return False
return True
def prepare_image_and_mask(
image,
width,
height,
overlap_percentage,
resize_percentage,
alignment,
overlap_left,
overlap_right,
overlap_top,
overlap_bottom,
):
target_size = (width, height)
scale_factor = min(target_size[0] / image.width, target_size[1] / image.height)
new_width = int(image.width * scale_factor)
new_height = int(image.height * scale_factor)
source = image.resize((new_width, new_height), Image.LANCZOS)
resize_percentage = 50
# Calculate new dimensions based on percentage
resize_factor = resize_percentage / 100
new_width = int(source.width * resize_factor)
new_height = int(source.height * resize_factor)
# Ensure minimum size of 64 pixels
new_width = max(new_width, 64)
new_height = max(new_height, 64)
# Resize the image
source = source.resize((new_width, new_height), Image.LANCZOS)
# Calculate the overlap in pixels based on the percentage
overlap_x = int(new_width * (overlap_percentage / 100))
overlap_y = int(new_height * (overlap_percentage / 100))
# Ensure minimum overlap of 1 pixel
overlap_x = max(overlap_x, 1)
overlap_y = max(overlap_y, 1)
# Calculate margins based on alignment
if alignment == "Middle":
margin_x = (target_size[0] - new_width) // 2
margin_y = (target_size[1] - new_height) // 2
elif alignment == "Left":
margin_x = 0
margin_y = (target_size[1] - new_height) // 2
elif alignment == "Right":
margin_x = target_size[0] - new_width
margin_y = (target_size[1] - new_height) // 2
elif alignment == "Top":
margin_x = (target_size[0] - new_width) // 2
margin_y = 0
elif alignment == "Bottom":
margin_x = (target_size[0] - new_width) // 2
margin_y = target_size[1] - new_height
# Adjust margins to eliminate gaps
margin_x = max(0, min(margin_x, target_size[0] - new_width))
margin_y = max(0, min(margin_y, target_size[1] - new_height))
# Create a new background image and paste the resized source image
background = Image.new("RGB", target_size, (255, 255, 255))
background.paste(source, (margin_x, margin_y))
# Create the mask
mask = Image.new("L", target_size, 255)
mask_draw = ImageDraw.Draw(mask)
# Calculate overlap areas
white_gaps_patch = 2
left_overlap = margin_x + overlap_x if overlap_left else margin_x + white_gaps_patch
right_overlap = (
margin_x + new_width - overlap_x
if overlap_right
else margin_x + new_width - white_gaps_patch
)
top_overlap = margin_y + overlap_y if overlap_top else margin_y + white_gaps_patch
bottom_overlap = (
margin_y + new_height - overlap_y
if overlap_bottom
else margin_y + new_height - white_gaps_patch
)
if alignment == "Left":
left_overlap = margin_x + overlap_x if overlap_left else margin_x
elif alignment == "Right":
right_overlap = (
margin_x + new_width - overlap_x if overlap_right else margin_x + new_width
)
elif alignment == "Top":
top_overlap = margin_y + overlap_y if overlap_top else margin_y
elif alignment == "Bottom":
bottom_overlap = (
margin_y + new_height - overlap_y
if overlap_bottom
else margin_y + new_height
)
# Draw the mask
mask_draw.rectangle(
[(left_overlap, top_overlap), (right_overlap, bottom_overlap)], fill=0
)
return background, mask
def inpaint(
image,
width,
height,
overlap_percentage,
num_inference_steps,
custom_resize_percentage,
prompt_input,
alignment,
overlap_left,
overlap_right,
overlap_top,
overlap_bottom,
progress=gr.Progress(track_tqdm=True),
):
background, mask = prepare_image_and_mask(
image,
width,
height,
overlap_percentage,
custom_resize_percentage,
alignment,
overlap_left,
overlap_right,
overlap_top,
overlap_bottom,
)
if not can_expand(background.width, background.height, width, height, alignment):
alignment = "Middle"
cnet_image = background.copy()
cnet_image.paste(0, (0, 0), mask)
final_prompt = prompt_input
# generator = torch.Generator(device="cuda").manual_seed(42)
result = pipe(
prompt=final_prompt,
height=height,
width=width,
image=cnet_image,
mask_image=mask,
num_inference_steps=num_inference_steps,
guidance_scale=30,
).images[0]
result = result.convert("RGBA")
cnet_image.paste(result, (0, 0), mask)
return cnet_image
@spaces.GPU
def rmbg(image, url):
if image is None:
image = url
image = load_img(image).convert("RGB")
image_size = image.size
input_images = transform_image(image).unsqueeze(0).to("cuda")
# Prediction
with torch.no_grad():
preds = birefnet(input_images)[-1].sigmoid().cpu()
pred = preds[0].squeeze()
pred_pil = transforms.ToPILImage()(pred)
mask = pred_pil.resize(image_size)
image.putalpha(mask)
return image
def placeholder(img):
return img
rmbg_tab = gr.Interface(
fn=rmbg, inputs=["image", "text"], outputs=["image"], api_name="rmbg"
)
outpaint_tab = gr.Interface(
fr=placeholder, inputs=["image"], outputs=["image"], api_name="outpainting"
)
demo = gr.TabbedInterface(
[rmbg_tab, outpaint_tab],
["remove background", "outpainting"],
title="Utilities that require GPU",
)
demo.launch()
|