Spaces:
Runtime error
Runtime error
update app
Browse files
app.py
CHANGED
|
@@ -5,6 +5,45 @@ from diffusers import FluxFillPipeline
|
|
| 5 |
|
| 6 |
pipe = FluxFillPipeline.from_pretrained("black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16).to("cuda")
|
| 7 |
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 8 |
@spaces.GPU()
|
| 9 |
def inpaint(
|
| 10 |
image,
|
|
@@ -13,14 +52,15 @@ def inpaint(
|
|
| 13 |
num_inference_steps=28,
|
| 14 |
guidance_scale=50,
|
| 15 |
):
|
| 16 |
-
|
| 17 |
mask = mask.convert("L")
|
|
|
|
| 18 |
|
| 19 |
result = pipe(
|
| 20 |
prompt=prompt,
|
| 21 |
-
height=
|
| 22 |
-
width=
|
| 23 |
-
image=
|
| 24 |
mask_image=mask,
|
| 25 |
num_inference_steps=num_inference_steps,
|
| 26 |
guidance_scale=guidance_scale,
|
|
|
|
| 5 |
|
| 6 |
pipe = FluxFillPipeline.from_pretrained("black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16).to("cuda")
|
| 7 |
|
| 8 |
+
# reference https://huggingface.co/spaces/black-forest-labs/FLUX.1-Fill-dev/blob/main/app.py
|
| 9 |
+
def calculate_optimal_dimensions(image):
|
| 10 |
+
# Extract the original dimensions
|
| 11 |
+
original_width, original_height = image.size
|
| 12 |
+
|
| 13 |
+
# Set constants
|
| 14 |
+
MIN_ASPECT_RATIO = 9 / 16
|
| 15 |
+
MAX_ASPECT_RATIO = 16 / 9
|
| 16 |
+
FIXED_DIMENSION = 1024
|
| 17 |
+
|
| 18 |
+
# Calculate the aspect ratio of the original image
|
| 19 |
+
original_aspect_ratio = original_width / original_height
|
| 20 |
+
|
| 21 |
+
# Determine which dimension to fix
|
| 22 |
+
if original_aspect_ratio > 1: # Wider than tall
|
| 23 |
+
width = FIXED_DIMENSION
|
| 24 |
+
height = round(FIXED_DIMENSION / original_aspect_ratio)
|
| 25 |
+
else: # Taller than wide
|
| 26 |
+
height = FIXED_DIMENSION
|
| 27 |
+
width = round(FIXED_DIMENSION * original_aspect_ratio)
|
| 28 |
+
|
| 29 |
+
# Ensure dimensions are multiples of 8
|
| 30 |
+
width = (width // 8) * 8
|
| 31 |
+
height = (height // 8) * 8
|
| 32 |
+
|
| 33 |
+
# Enforce aspect ratio limits
|
| 34 |
+
calculated_aspect_ratio = width / height
|
| 35 |
+
if calculated_aspect_ratio > MAX_ASPECT_RATIO:
|
| 36 |
+
width = (height * MAX_ASPECT_RATIO // 8) * 8
|
| 37 |
+
elif calculated_aspect_ratio < MIN_ASPECT_RATIO:
|
| 38 |
+
height = (width / MIN_ASPECT_RATIO // 8) * 8
|
| 39 |
+
|
| 40 |
+
# Ensure width and height remain above the minimum dimensions
|
| 41 |
+
width = max(width, 576) if width == FIXED_DIMENSION else width
|
| 42 |
+
height = max(height, 576) if height == FIXED_DIMENSION else height
|
| 43 |
+
|
| 44 |
+
return width, height
|
| 45 |
+
|
| 46 |
+
|
| 47 |
@spaces.GPU()
|
| 48 |
def inpaint(
|
| 49 |
image,
|
|
|
|
| 52 |
num_inference_steps=28,
|
| 53 |
guidance_scale=50,
|
| 54 |
):
|
| 55 |
+
image = image.convert("RGB")
|
| 56 |
mask = mask.convert("L")
|
| 57 |
+
width, height = calculate_optimal_dimensions(image)
|
| 58 |
|
| 59 |
result = pipe(
|
| 60 |
prompt=prompt,
|
| 61 |
+
height= height,
|
| 62 |
+
width= width,
|
| 63 |
+
image= image,
|
| 64 |
mask_image=mask,
|
| 65 |
num_inference_steps=num_inference_steps,
|
| 66 |
guidance_scale=guidance_scale,
|