Spaces:
Running
on
Zero
Running
on
Zero
import torch | |
import spaces | |
import gradio as gr | |
from diffusers import FluxFillPipeline | |
pipe = FluxFillPipeline.from_pretrained("black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16).to("cuda") | |
# reference https://huggingface.co/spaces/black-forest-labs/FLUX.1-Fill-dev/blob/main/app.py | |
def calculate_optimal_dimensions(image): | |
# Extract the original dimensions | |
original_width, original_height = image.size | |
# Set constants | |
MIN_ASPECT_RATIO = 9 / 16 | |
MAX_ASPECT_RATIO = 16 / 9 | |
FIXED_DIMENSION = 1024 | |
# Calculate the aspect ratio of the original image | |
original_aspect_ratio = original_width / original_height | |
# Determine which dimension to fix | |
if original_aspect_ratio > 1: # Wider than tall | |
width = FIXED_DIMENSION | |
height = round(FIXED_DIMENSION / original_aspect_ratio) | |
else: # Taller than wide | |
height = FIXED_DIMENSION | |
width = round(FIXED_DIMENSION * original_aspect_ratio) | |
# Ensure dimensions are multiples of 8 | |
width = (width // 8) * 8 | |
height = (height // 8) * 8 | |
# Enforce aspect ratio limits | |
calculated_aspect_ratio = width / height | |
if calculated_aspect_ratio > MAX_ASPECT_RATIO: | |
width = (height * MAX_ASPECT_RATIO // 8) * 8 | |
elif calculated_aspect_ratio < MIN_ASPECT_RATIO: | |
height = (width / MIN_ASPECT_RATIO // 8) * 8 | |
# Ensure width and height remain above the minimum dimensions | |
width = max(width, 576) if width == FIXED_DIMENSION else width | |
height = max(height, 576) if height == FIXED_DIMENSION else height | |
return width, height | |
def inpaint( | |
image, | |
mask, | |
prompt="", | |
num_inference_steps=28, | |
guidance_scale=50, | |
): | |
image = image.convert("RGB") | |
mask = mask.convert("L") | |
width, height = calculate_optimal_dimensions(image) | |
result = pipe( | |
prompt=prompt, | |
height= height, | |
width= width, | |
image= image, | |
mask_image=mask, | |
num_inference_steps=num_inference_steps, | |
guidance_scale=guidance_scale, | |
).images[0] | |
result = result.convert("RGBA") | |
return result | |
demo = gr.Interface( | |
fn=inpaint, | |
inputs=[ | |
gr.Image(label="image", type="pil"), | |
gr.Image(label="mask", type="pil"), | |
gr.Text(label="prompt"), | |
gr.Number(value=40, label="num_inference_steps"), | |
gr.Number(value=28, label="guidance_scale"), | |
], | |
outputs=["image"], | |
api_name="inpaint", | |
examples=[["./assets/rocket.png", "./assets/Inpainting mask.png"]], | |
cache_examples=False, | |
description="it is recommended that you use https://github.com/la-voliere/react-mask-editor when creating an image mask in JS and then inverse it before sending it to this space", | |
) | |
demo.launch() |