Spaces:
Runtime error
Runtime error
| import torch | |
| import spaces | |
| import gradio as gr | |
| from diffusers import FluxFillPipeline | |
| pipe = FluxFillPipeline.from_pretrained("black-forest-labs/FLUX.1-Fill-dev", torch_dtype=torch.bfloat16).to("cuda") | |
| # reference https://huggingface.co/spaces/black-forest-labs/FLUX.1-Fill-dev/blob/main/app.py | |
| def calculate_optimal_dimensions(image): | |
| # Extract the original dimensions | |
| original_width, original_height = image.size | |
| # Set constants | |
| MIN_ASPECT_RATIO = 9 / 16 | |
| MAX_ASPECT_RATIO = 16 / 9 | |
| FIXED_DIMENSION = 1024 | |
| # Calculate the aspect ratio of the original image | |
| original_aspect_ratio = original_width / original_height | |
| # Determine which dimension to fix | |
| if original_aspect_ratio > 1: # Wider than tall | |
| width = FIXED_DIMENSION | |
| height = round(FIXED_DIMENSION / original_aspect_ratio) | |
| else: # Taller than wide | |
| height = FIXED_DIMENSION | |
| width = round(FIXED_DIMENSION * original_aspect_ratio) | |
| # Ensure dimensions are multiples of 8 | |
| width = (width // 8) * 8 | |
| height = (height // 8) * 8 | |
| # Enforce aspect ratio limits | |
| calculated_aspect_ratio = width / height | |
| if calculated_aspect_ratio > MAX_ASPECT_RATIO: | |
| width = (height * MAX_ASPECT_RATIO // 8) * 8 | |
| elif calculated_aspect_ratio < MIN_ASPECT_RATIO: | |
| height = (width / MIN_ASPECT_RATIO // 8) * 8 | |
| # Ensure width and height remain above the minimum dimensions | |
| width = max(width, 576) if width == FIXED_DIMENSION else width | |
| height = max(height, 576) if height == FIXED_DIMENSION else height | |
| return width, height | |
| def inpaint( | |
| image, | |
| mask, | |
| prompt="", | |
| num_inference_steps=28, | |
| guidance_scale=50, | |
| ): | |
| image = image.convert("RGB") | |
| mask = mask.convert("L") | |
| width, height = calculate_optimal_dimensions(image) | |
| result = pipe( | |
| prompt=prompt, | |
| height= height, | |
| width= width, | |
| image= image, | |
| mask_image=mask, | |
| num_inference_steps=num_inference_steps, | |
| guidance_scale=guidance_scale, | |
| ).images[0] | |
| result = result.convert("RGBA") | |
| return result | |
| demo = gr.Interface( | |
| fn=inpaint, | |
| inputs=[ | |
| gr.Image(label="image", type="pil"), | |
| gr.Image(label="mask", type="pil"), | |
| gr.Text(label="prompt"), | |
| gr.Number(value=40, label="num_inference_steps"), | |
| gr.Number(value=28, label="guidance_scale"), | |
| ], | |
| outputs=["image"], | |
| api_name="inpaint", | |
| examples=[["./assets/rocket.png", "./assets/Inpainting mask.png"]], | |
| cache_examples=False, | |
| description="it is recommended that you use https://github.com/la-voliere/react-mask-editor when creating an image mask in JS and then inverse it before sending it to this space", | |
| ) | |
| demo.launch(debug=True,show_error=True) |