import gradio as gr import torch EXAMPLE_MD = """ ```python import torch t1 = torch.arange({n1}).view({dim1}) t2 = torch.arange({n2}).view({dim2}) (t1 @ t2).shape = {out_shape} ``` """ def generate_example(dim1: list, dim2: list): n1 = 1 n2 = 1 for i in dim1: n1 *= i for i in dim2: n2 *= i t1 = torch.arange(n1).view(dim1) t2 = torch.arange(n2).view(dim2) try: out_shape = list((t1 @ t2).shape) except RuntimeError: out_shape = "error" code = EXAMPLE_MD.format( n1=str(n1), dim1=str(dim1), n2=str(n2), dim2=str(dim2), out_shape=str(out_shape) ) return dim1, dim2, code def sanitize_dimention(dim): if dim is None: gr.Error("one of the dimentions is empty, please fill it") if "[" in dim: dim = dim.replace("[", "") if "]" in dim: dim = dim.replace("]", "") if "," in dim: dim = dim.replace(",", " ").strip() out = [int(i.strip()) for i in dim.split()] else: out = [int(dim.strip())] if 0 in out: gr.Error( "Found the number 0 in one of the dimensions which is not allowed, consider using 1 instead" ) return out def create_row(dim,is_dim=None,checks=None): out = "| " n_dim = len(dim) for i in range(n_dim): if (is_dim ==1 and i != n_dim-1) or (is_dim ==2 and i ==n_dim-1): color = "green" if checks[i] == "V" else "red" out += f" {dim[i]} | " elif (is_dim ==1 and i == n_dim-1) or (is_dim ==2 and i ==n_dim-2): color = "blue" if checks[i] == "V" else "red" out += f" {dim[i]} | " else : out+= f"{dim[i]} | " return out + "\n" def create_header(n_dim, checks=None): checks = [""] * n_dim if checks is None else checks out = "| " for i in checks: out = out + i + " | " out += "\n" + "|---" * n_dim + "|\n" return out def generate_table(dim1, dim2, checks=None): n_dim = len(dim1) table = create_header(n_dim, checks) # tensor 1 if not checks : table += create_row(dim1) else : table += create_row(dim1,1,checks) # tensor 2 if not checks : table += create_row(dim2) else : table += create_row(dim2,2,checks) return table def alignment_and_fill_with_ones(dim1, dim2): n_dim = max(len(dim1), len(dim2)) if len(dim1) == len(dim2): pass elif len(dim1) < len(dim2): placeholder = [1] * (n_dim - len(dim1)) placeholder.extend(dim1) dim1 = placeholder else: placeholder = [1] * (n_dim - len(dim2)) placeholder.extend(dim2) dim2 = placeholder return dim1, dim2 def check_validity(dim1,dim2): if len(dim1) < 2: return ["WIP"] * len(dim1) out = [] for i in range(len(dim1)-2): if dim1[i] == dim2[i]: out.append("V") else : out.append("X") # final dims if dim1[-1] == dim2[-2]: out.extend(["V","V"]) else : out.extend(["X","X"]) return out def substitute_ones_with_concat(dim1,dim2): for i in range(len(dim1)-2): dim1[i] = dim2[i] if dim1[i] == 1 else dim1[i] dim2[i] = dim1[i] if dim2[i] == 1 else dim2[i] return dim1, dim2 def predict(dim1, dim2): dim1 = sanitize_dimention(dim1) dim2 = sanitize_dimention(dim2) dim1, dim2, code = generate_example(dim1, dim2) # TODO # fix for dims if one or both have dimensions is 1 # Table 1 dim1, dim2 = alignment_and_fill_with_ones(dim1, dim2) table1 = generate_table(dim1, dim2) # Table 2 dim1, dim2 = substitute_ones_with_concat(dim1,dim2) table2 = generate_table(dim1, dim2) # Table 3 checks = check_validity(dim1,dim2) table3 = generate_table(dim1,dim2,checks) out = code out += "\n# Step1 (alignment and pre_append with ones)\n" + table1 out += "\n# Step2 (susbtitute columns that have 1 with concat)\nexcept for last 2 dimensions\n" + table2 out += "\n# Step3 (check if matrix multiplication is valid)\n" out += "* last dimension of dim1 should equal before last dimension of dim2\n" out += "* all the other dimensions should be equal to one another\n\n" + table3 return out demo = gr.Interface( predict, inputs=["text", "text"], outputs=["markdown"], examples=[["9,2,1,3,3", "5,3,7"], ["1,2,3", "5,2,7"]], ) demo.launch(debug=True)