import streamlit as st import numpy as np from PIL import Image # constants HF_REPO_NAME_DIFFUSION = 'nostalgebraist/nostalgebraist-autoresponder-diffusion' model_path_diffusion = 'nostalgebraist-autoresponder-diffusion' timestep_respacing_sres1 = '20' # '90,60,60,20,20' timestep_respacing_sres2 = '20' # '250' DIFFUSION_DEFAULTS = dict( batch_size=1, n_samples=1, clf_free_guidance=False, clf_free_guidance_sres=False, guidance_scale=1, guidance_scale_sres=0, yield_intermediates=True ) @st.cache def setup(): import os, subprocess, sys os.system("git clone https://github.com/nostalgebraist/improved-diffusion.git && cd improved-diffusion && git fetch origin nbar-space && git checkout nbar-dev && pip install -e .") os.system("pip install tokenizers x-transformers==0.22.0 axial-positional-embedding") os.system("pip install einops==0.3.2") sys.path.append("improved-diffusion") from improved_diffusion import pipeline # import improved_diffusion.pipeline # from transformer_utils.util.tfm_utils import get_local_path_from_huggingface_cdn # # if not os.path.exists(model_path_diffusion): # model_tar_name = 'model.tar' # model_tar_path = get_local_path_from_huggingface_cdn( # HF_REPO_NAME_DIFFUSION, model_tar_name # ) # subprocess.run(f"tar -xf {model_tar_path} && rm {model_tar_path}", shell=True) # # checkpoint_path_sres1 = os.path.join(model_path_diffusion, "sres1.pt") # config_path_sres1 = os.path.join(model_path_diffusion, "config_sres1.json") # # checkpoint_path_sres2 = os.path.join(model_path_diffusion, "sres2.pt") # config_path_sres2 = os.path.join(model_path_diffusion, "config_sres2.json") # # # load # sampling_model_sres1 = improved_diffusion.pipeline.SamplingModel.from_config( # checkpoint_path=checkpoint_path_sres1, # config_path=config_path_sres1, # timestep_respacing=timestep_respacing_sres1 # ) # # sampling_model_sres2 = improved_diffusion.pipeline.SamplingModel.from_config( # checkpoint_path=checkpoint_path_sres2, # config_path=config_path_sres2, # timestep_respacing=timestep_respacing_sres2 # ) # # pipeline = improved_diffusion.pipeline.SamplingPipeline(sampling_model_sres1, sampling_model_sres2) return pipeline pipeline = setup() def handler(text, ts1, ts2, gs1): # # a = np.random.randint(0, 255, (128, 128, 3)).astype(np.uint8) # data = {'text': text[:380], 'guidance_scale': gs1} # args = {k: v for k, v in DIFFUSION_DEFAULTS.items()} # args.update(data) # # print(f"running: {args}") # # pipeline.base_model.set_timestep_respacing(str(ts1)) # pipeline.super_res_model.set_timestep_respacing(str(ts2)) # # return pipeline.sample(**args) text = st.text_area('asdf') if st.button('rweerew'): for s, xs in handler(text, 20, 20, 0): pass # x = st.slider('Select a value') # st.write(x, 'squared is', x * x)