import streamlit as st import time import numpy as np from PIL import Image # constants HF_REPO_NAME_DIFFUSION = 'nostalgebraist/nostalgebraist-autoresponder-diffusion' model_path_diffusion = 'nostalgebraist-autoresponder-diffusion' timestep_respacing_sres1 = '20' # '90,60,60,20,20' timestep_respacing_sres2 = '20' # '250' DIFFUSION_DEFAULTS = dict( batch_size=1, n_samples=1, clf_free_guidance=True, clf_free_guidance_sres=False, guidance_scale=1, guidance_scale_sres=0, yield_intermediates=True ) @st.experimental_singleton def setup(): import os, subprocess, sys if not os.path.exists('improved_diffusion'): os.system("git clone https://github.com/nostalgebraist/improved-diffusion.git") os.system("cd improved-diffusion && git fetch origin nbar-space && git checkout nbar-space && pip install -e .") os.system("pip install tokenizers x-transformers==0.22.0 axial-positional-embedding") os.system("pip install einops==0.3.2") sys.path.append("improved-diffusion") import improved_diffusion.pipeline from transformer_utils.util.tfm_utils import get_local_path_from_huggingface_cdn if not os.path.exists(model_path_diffusion): model_tar_name = 'model.tar' model_tar_path = get_local_path_from_huggingface_cdn( HF_REPO_NAME_DIFFUSION, model_tar_name ) subprocess.run(f"tar -xf {model_tar_path} && rm {model_tar_path}", shell=True) checkpoint_path_sres1 = os.path.join(model_path_diffusion, "sres1.pt") config_path_sres1 = os.path.join(model_path_diffusion, "config_sres1.json") checkpoint_path_sres2 = os.path.join(model_path_diffusion, "sres2.pt") config_path_sres2 = os.path.join(model_path_diffusion, "config_sres2.json") # load sampling_model_sres1 = improved_diffusion.pipeline.SamplingModel.from_config( checkpoint_path=checkpoint_path_sres1, config_path=config_path_sres1, timestep_respacing=timestep_respacing_sres1 ) sampling_model_sres2 = improved_diffusion.pipeline.SamplingModel.from_config( checkpoint_path=checkpoint_path_sres2, config_path=config_path_sres2, timestep_respacing=timestep_respacing_sres2 ) pipeline = improved_diffusion.pipeline.SamplingPipeline(sampling_model_sres1, sampling_model_sres2) return pipeline def handler(text, ts1, ts2, gs1): pipeline = setup() data = {'text': text[:380], 'guidance_scale': gs1} args = {k: v for k, v in DIFFUSION_DEFAULTS.items()} args.update(data) print(f"running: {args}") pipeline.base_model.set_timestep_respacing(str(ts1)) pipeline.super_res_model.set_timestep_respacing(str(ts2)) return pipeline.sample(**args) st.title('nostalgebraist-autoresponder image generation demo') st.header('Settings') help_ts1 = "How long to run the base model. Larger values make the image more realistic / better. Smaller values are faster." help_ts2 = "How long to run the upsampling model. Larger values sometimes make the big image crisper and more detailed. Smaller values are faster." help_gs1 = "Guidance scale. Larger values make the image more likely to contain the text you wrote. If this is zero, the first part will be faster." ts1 = st.slider('Steps (base)', min_value=5, max_value=500, value=10, help=help_ts1) ts2 = st.slider('Steps (upsampling)', min_value=5, max_value=500, value=10, help=help_ts2) gs1 = st.select_slider('Guidance scale (base)', [0.5*i for i in range(9)], value=0., help=help_gs1) st.header('Prompt') button_dril = st.button('Fill @dril tweet example text') if 'fill_value' in st.session_state: fill_value = st.session_state.fill_value else: fill_value = "" if button_dril: fill_value = 'wint\nFollowing\n@dril\nthe wise man bowed his head solemnly and\nspoke: "theres actually zero difference\nbetween good & bad things. you imbecile.\nyou fucking moron' text = st.text_area('Enter your text here (or leave blank for a textless image)', max_chars=380, height=230, value=fill_value) button_go = st.button('Generate') button_stop = st.button('Stop') st.write("During generation, the two images show different ways of looking at the same process.\n- The left image starts with 100% noise and gradually turns into 100 signal.\n- The right image shows the model's current 'guess' about the left image will look like when all the noise has been removed.") generating_marker = st.empty() low_res = st.empty() high_res = st.empty() if button_go: with generating_marker.container(): st.write('**Generating...**') st.write('**Prompt:**') st.write(text) count_low_res, count_high_res = 0, 0 times_low, times_high = [], [] t = time.time() for s, xs in handler(text, ts1, ts2, gs1): s = Image.fromarray(s[0]) xs = Image.fromarray(xs[0]) t2 = time.time() delta = t2 - t t = t2 is_high_res = s.size[0] == 256 if is_high_res: target = high_res count_high_res += 1 count = count_high_res total = ts2 times_high.append(delta) times = times_high prefix = "Part 2 of 2 (upsampling)" else: target = low_res count_low_res += 1 count = count_low_res total = ts1 times_low.append(delta) times = times_low prefix = "Part 1 of 2 (base model)" rate = sum(times)/len(times) with target.container(): st.image([s, xs]) st.write(f'{prefix} | {count:02d} / {total} frames | {rate:.2f} seconds/frame') if button_stop: break with generating_marker.container(): st.write('')