Spaces:
Runtime error
Runtime error
import streamlit as st | |
import numpy as np | |
from PIL import Image | |
# constants | |
HF_REPO_NAME_DIFFUSION = 'nostalgebraist/nostalgebraist-autoresponder-diffusion' | |
model_path_diffusion = 'nostalgebraist-autoresponder-diffusion' | |
timestep_respacing_sres1 = '20' # '90,60,60,20,20' | |
timestep_respacing_sres2 = '20' # '250' | |
DIFFUSION_DEFAULTS = dict( | |
batch_size=1, | |
n_samples=1, | |
clf_free_guidance=False, | |
clf_free_guidance_sres=False, | |
guidance_scale=1, | |
guidance_scale_sres=0, | |
yield_intermediates=True | |
) | |
def setup(): | |
import os, subprocess, sys | |
os.system("git clone https://github.com/nostalgebraist/improved-diffusion.git && cd improved-diffusion && git fetch origin nbar-space && git checkout nbar-dev && pip install -e .") | |
os.system("pip install tokenizers x-transformers==0.22.0 axial-positional-embedding") | |
os.system("pip install einops==0.3.2") | |
sys.path.append("improved-diffusion") | |
from improved_diffusion import pipeline | |
# import improved_diffusion.pipeline | |
# from transformer_utils.util.tfm_utils import get_local_path_from_huggingface_cdn | |
# | |
# if not os.path.exists(model_path_diffusion): | |
# model_tar_name = 'model.tar' | |
# model_tar_path = get_local_path_from_huggingface_cdn( | |
# HF_REPO_NAME_DIFFUSION, model_tar_name | |
# ) | |
# subprocess.run(f"tar -xf {model_tar_path} && rm {model_tar_path}", shell=True) | |
# | |
# checkpoint_path_sres1 = os.path.join(model_path_diffusion, "sres1.pt") | |
# config_path_sres1 = os.path.join(model_path_diffusion, "config_sres1.json") | |
# | |
# checkpoint_path_sres2 = os.path.join(model_path_diffusion, "sres2.pt") | |
# config_path_sres2 = os.path.join(model_path_diffusion, "config_sres2.json") | |
# | |
# # load | |
# sampling_model_sres1 = improved_diffusion.pipeline.SamplingModel.from_config( | |
# checkpoint_path=checkpoint_path_sres1, | |
# config_path=config_path_sres1, | |
# timestep_respacing=timestep_respacing_sres1 | |
# ) | |
# | |
# sampling_model_sres2 = improved_diffusion.pipeline.SamplingModel.from_config( | |
# checkpoint_path=checkpoint_path_sres2, | |
# config_path=config_path_sres2, | |
# timestep_respacing=timestep_respacing_sres2 | |
# ) | |
# | |
# pipeline = improved_diffusion.pipeline.SamplingPipeline(sampling_model_sres1, sampling_model_sres2) | |
return pipeline | |
pipeline = setup() | |
def handler(text, ts1, ts2, gs1): | |
# # a = np.random.randint(0, 255, (128, 128, 3)).astype(np.uint8) | |
# data = {'text': text[:380], 'guidance_scale': gs1} | |
# args = {k: v for k, v in DIFFUSION_DEFAULTS.items()} | |
# args.update(data) | |
# | |
# print(f"running: {args}") | |
# | |
# pipeline.base_model.set_timestep_respacing(str(ts1)) | |
# pipeline.super_res_model.set_timestep_respacing(str(ts2)) | |
# | |
# return pipeline.sample(**args) | |
text = st.text_area('asdf') | |
if st.button('rweerew'): | |
for s, xs in handler(text, 20, 20, 0): | |
pass | |
# x = st.slider('Select a value') | |
# st.write(x, 'squared is', x * x) | |