Spaces:
Runtime error
Runtime error
import streamlit as st | |
import time | |
import numpy as np | |
from PIL import Image | |
# constants | |
HF_REPO_NAME_DIFFUSION = 'nostalgebraist/nostalgebraist-autoresponder-diffusion' | |
model_path_diffusion = 'nostalgebraist-autoresponder-diffusion' | |
timestep_respacing_sres1 = '20' # '90,60,60,20,20' | |
timestep_respacing_sres2 = '20' # '250' | |
DIFFUSION_DEFAULTS = dict( | |
batch_size=1, | |
n_samples=1, | |
clf_free_guidance=True, | |
clf_free_guidance_sres=False, | |
guidance_scale=1, | |
guidance_scale_sres=0, | |
yield_intermediates=True | |
) | |
def setup(): | |
import os, subprocess, sys | |
if not os.path.exists('improved_diffusion'): | |
os.system("git clone https://github.com/nostalgebraist/improved-diffusion.git") | |
os.system("cd improved-diffusion && git fetch origin nbar-space && git checkout nbar-space && pip install -e .") | |
os.system("pip install tokenizers x-transformers==0.22.0 axial-positional-embedding") | |
os.system("pip install einops==0.3.2") | |
sys.path.append("improved-diffusion") | |
import improved_diffusion.pipeline | |
from transformer_utils.util.tfm_utils import get_local_path_from_huggingface_cdn | |
if not os.path.exists(model_path_diffusion): | |
model_tar_name = 'model.tar' | |
model_tar_path = get_local_path_from_huggingface_cdn( | |
HF_REPO_NAME_DIFFUSION, model_tar_name | |
) | |
subprocess.run(f"tar -xf {model_tar_path} && rm {model_tar_path}", shell=True) | |
checkpoint_path_sres1 = os.path.join(model_path_diffusion, "sres1.pt") | |
config_path_sres1 = os.path.join(model_path_diffusion, "config_sres1.json") | |
checkpoint_path_sres2 = os.path.join(model_path_diffusion, "sres2.pt") | |
config_path_sres2 = os.path.join(model_path_diffusion, "config_sres2.json") | |
# load | |
sampling_model_sres1 = improved_diffusion.pipeline.SamplingModel.from_config( | |
checkpoint_path=checkpoint_path_sres1, | |
config_path=config_path_sres1, | |
timestep_respacing=timestep_respacing_sres1 | |
) | |
sampling_model_sres2 = improved_diffusion.pipeline.SamplingModel.from_config( | |
checkpoint_path=checkpoint_path_sres2, | |
config_path=config_path_sres2, | |
timestep_respacing=timestep_respacing_sres2 | |
) | |
pipeline = improved_diffusion.pipeline.SamplingPipeline(sampling_model_sres1, sampling_model_sres2) | |
return pipeline | |
def handler(text, ts1, ts2, gs1): | |
pipeline = setup() | |
data = {'text': text[:380], 'guidance_scale': gs1} | |
args = {k: v for k, v in DIFFUSION_DEFAULTS.items()} | |
args.update(data) | |
print(f"running: {args}") | |
pipeline.base_model.set_timestep_respacing(str(ts1)) | |
pipeline.super_res_model.set_timestep_respacing(str(ts2)) | |
return pipeline.sample(**args) | |
st.title('nostalgebraist-autoresponder image generation demo') | |
st.header('Settings') | |
help_ts1 = "How long to run the base model. Larger values make the image more realistic / better. Smaller values are faster." | |
help_ts2 = "How long to run the upsampling model. Larger values sometimes make the big image crisper and more detailed. Smaller values are faster." | |
help_gs1 = "Guidance scale. Larger values make the image more likely to contain the text you wrote. If this is zero, the first part will be faster." | |
ts1 = st.slider('Steps (base)', min_value=5, max_value=500, value=10, help=help_ts1) | |
ts2 = st.slider('Steps (upsampling)', min_value=5, max_value=500, value=10, help=help_ts2) | |
gs1 = st.select_slider('Guidance scale (base)', [0.5*i for i in range(9)], value=0., help=help_gs1) | |
st.header('Prompt') | |
button_dril = st.button('Fill @dril tweet example text') | |
if 'fill_value' in st.session_state: | |
fill_value = st.session_state.fill_value | |
else: | |
fill_value = "" | |
if button_dril: | |
fill_value = 'wint\nFollowing\n@dril\nthe wise man bowed his head solemnly and\nspoke: "theres actually zero difference\nbetween good & bad things. you imbecile.\nyou fucking moron' | |
text = st.text_area('Enter your text here (or leave blank for a textless image)', max_chars=380, height=230, | |
value=fill_value) | |
button_go = st.button('Generate') | |
button_stop = st.button('Stop') | |
st.write("During generation, the two images show different ways of looking at the same process.\n- The left image starts with 100% noise and gradually turns into 100 signal.\n- The right image shows the model's current 'guess' about the left image will look like when all the noise has been removed.") | |
generating_marker = st.empty() | |
low_res = st.empty() | |
high_res = st.empty() | |
if button_go: | |
with generating_marker.container(): | |
st.write('**Generating...**') | |
st.write('**Prompt:**') | |
st.write(text) | |
count_low_res, count_high_res = 0, 0 | |
times_low, times_high = [], [] | |
t = time.time() | |
for s, xs in handler(text, ts1, ts2, gs1): | |
s = Image.fromarray(s[0]) | |
xs = Image.fromarray(xs[0]) | |
t2 = time.time() | |
delta = t2 - t | |
t = t2 | |
is_high_res = s.size[0] == 256 | |
if is_high_res: | |
target = high_res | |
count_high_res += 1 | |
count = count_high_res | |
total = ts2 | |
times_high.append(delta) | |
times = times_high | |
prefix = "Part 2 of 2 (upsampling)" | |
else: | |
target = low_res | |
count_low_res += 1 | |
count = count_low_res | |
total = ts1 | |
times_low.append(delta) | |
times = times_low | |
prefix = "Part 1 of 2 (base model)" | |
rate = sum(times)/len(times) | |
with target.container(): | |
st.image([s, xs]) | |
st.write(f'{prefix} | {count:02d} / {total} frames | {rate:.2f} seconds/frame') | |
if button_stop: | |
break | |
with generating_marker.container(): | |
st.write('') | |