nostalgebraist's picture
state
b9602b5
raw
history blame
5.79 kB
import streamlit as st
import time
import numpy as np
from PIL import Image
# constants
HF_REPO_NAME_DIFFUSION = 'nostalgebraist/nostalgebraist-autoresponder-diffusion'
model_path_diffusion = 'nostalgebraist-autoresponder-diffusion'
timestep_respacing_sres1 = '20' # '90,60,60,20,20'
timestep_respacing_sres2 = '20' # '250'
DIFFUSION_DEFAULTS = dict(
batch_size=1,
n_samples=1,
clf_free_guidance=True,
clf_free_guidance_sres=False,
guidance_scale=1,
guidance_scale_sres=0,
yield_intermediates=True
)
@st.experimental_singleton
def setup():
import os, subprocess, sys
if not os.path.exists('improved_diffusion'):
os.system("git clone https://github.com/nostalgebraist/improved-diffusion.git")
os.system("cd improved-diffusion && git fetch origin nbar-space && git checkout nbar-space && pip install -e .")
os.system("pip install tokenizers x-transformers==0.22.0 axial-positional-embedding")
os.system("pip install einops==0.3.2")
sys.path.append("improved-diffusion")
import improved_diffusion.pipeline
from transformer_utils.util.tfm_utils import get_local_path_from_huggingface_cdn
if not os.path.exists(model_path_diffusion):
model_tar_name = 'model.tar'
model_tar_path = get_local_path_from_huggingface_cdn(
HF_REPO_NAME_DIFFUSION, model_tar_name
)
subprocess.run(f"tar -xf {model_tar_path} && rm {model_tar_path}", shell=True)
checkpoint_path_sres1 = os.path.join(model_path_diffusion, "sres1.pt")
config_path_sres1 = os.path.join(model_path_diffusion, "config_sres1.json")
checkpoint_path_sres2 = os.path.join(model_path_diffusion, "sres2.pt")
config_path_sres2 = os.path.join(model_path_diffusion, "config_sres2.json")
# load
sampling_model_sres1 = improved_diffusion.pipeline.SamplingModel.from_config(
checkpoint_path=checkpoint_path_sres1,
config_path=config_path_sres1,
timestep_respacing=timestep_respacing_sres1
)
sampling_model_sres2 = improved_diffusion.pipeline.SamplingModel.from_config(
checkpoint_path=checkpoint_path_sres2,
config_path=config_path_sres2,
timestep_respacing=timestep_respacing_sres2
)
pipeline = improved_diffusion.pipeline.SamplingPipeline(sampling_model_sres1, sampling_model_sres2)
return pipeline
def handler(text, ts1, ts2, gs1):
pipeline = setup()
data = {'text': text[:380], 'guidance_scale': gs1}
args = {k: v for k, v in DIFFUSION_DEFAULTS.items()}
args.update(data)
print(f"running: {args}")
pipeline.base_model.set_timestep_respacing(str(ts1))
pipeline.super_res_model.set_timestep_respacing(str(ts2))
return pipeline.sample(**args)
st.title('nostalgebraist-autoresponder image generation demo')
st.header('Settings')
help_ts1 = "How long to run the base model. Larger values make the image more realistic / better. Smaller values are faster."
help_ts2 = "How long to run the upsampling model. Larger values sometimes make the big image crisper and more detailed. Smaller values are faster."
help_gs1 = "Guidance scale. Larger values make the image more likely to contain the text you wrote. If this is zero, the first part will be faster."
ts1 = st.slider('Steps (base)', min_value=5, max_value=500, value=10, help=help_ts1)
ts2 = st.slider('Steps (upsampling)', min_value=5, max_value=500, value=10, help=help_ts2)
gs1 = st.select_slider('Guidance scale (base)', [0.5*i for i in range(9)], value=0., help=help_gs1)
st.header('Prompt')
button_dril = st.button('Fill @dril tweet example text')
if 'fill_value' in st.session_state:
fill_value = st.session_state.fill_value
else:
fill_value = ""
if button_dril:
fill_value = 'wint\nFollowing\n@dril\nthe wise man bowed his head solemnly and\nspoke: "theres actually zero difference\nbetween good & bad things. you imbecile.\nyou fucking moron'
text = st.text_area('Enter your text here (or leave blank for a textless image)', max_chars=380, height=230,
value=fill_value)
button_go = st.button('Generate')
button_stop = st.button('Stop')
st.write("During generation, the two images show different ways of looking at the same process.\n- The left image starts with 100% noise and gradually turns into 100 signal.\n- The right image shows the model's current 'guess' about the left image will look like when all the noise has been removed.")
generating_marker = st.empty()
low_res = st.empty()
high_res = st.empty()
if button_go:
with generating_marker.container():
st.write('**Generating...**')
st.write('**Prompt:**')
st.write(text)
count_low_res, count_high_res = 0, 0
times_low, times_high = [], []
t = time.time()
for s, xs in handler(text, ts1, ts2, gs1):
s = Image.fromarray(s[0])
xs = Image.fromarray(xs[0])
t2 = time.time()
delta = t2 - t
t = t2
is_high_res = s.size[0] == 256
if is_high_res:
target = high_res
count_high_res += 1
count = count_high_res
total = ts2
times_high.append(delta)
times = times_high
prefix = "Part 2 of 2 (upsampling)"
else:
target = low_res
count_low_res += 1
count = count_low_res
total = ts1
times_low.append(delta)
times = times_low
prefix = "Part 1 of 2 (base model)"
rate = sum(times)/len(times)
with target.container():
st.image([s, xs])
st.write(f'{prefix} | {count:02d} / {total} frames | {rate:.2f} seconds/frame')
if button_stop:
break
with generating_marker.container():
st.write('')