pipeline / app.py
nornorr's picture
Update app.py
2cf35eb
raw
history blame
517 Bytes
import streamlit as st
from transformers import pipeline
classifier = pipeline("question-answering", model="ydshieh/tiny-random-gptj-for-question-answering")
def main():
st.title("question-answering")
with st.form("text_field"):
text = st.text_area('enter some text:')
# clicked==True only when the button is clicked
clicked = st.form_submit_button("Submit")
if clicked:
results = classifier([text])
st.json(results)
if __name__ == "__main__":
main()