from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModelForTokenClassification from sentence_transformers import SentenceTransformer import torch import numpy as np from typing import Dict, List, Optional import json class ProductRecommender: def __init__(self): self.model_analyzer = MultiModelAnalyzer() def get_recommendations(self, query: str, product_database: List[Dict]) -> List[Dict]: try: query_analysis = self.model_analyzer.analyze_text(query) # For testing, return a simple recommendation return [{ "name": "Test Product", "price": "₹999", "category": "test", "similarity": 0.95 }] except Exception as e: print(f"Error in recommendations: {str(e)}") return [] class MultiModelAnalyzer: def __init__(self): try: self.category_model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased") self.category_tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased") self.semantic_model = SentenceTransformer('paraphrase-MiniLM-L6-v2') except Exception as e: print(f"Error initializing models: {str(e)}") def analyze_text(self, text: str) -> Dict: return { "category": "test", "embedding": np.zeros(10), "features": ["test"] }