Spaces:
Paused
Paused
Update product_recommender.py
Browse files- product_recommender.py +37 -57
product_recommender.py
CHANGED
|
@@ -1,61 +1,41 @@
|
|
| 1 |
-
import
|
| 2 |
-
from
|
|
|
|
|
|
|
|
|
|
| 3 |
import json
|
| 4 |
-
import urllib.parse
|
| 5 |
-
from product_recommender import ProductRecommender
|
| 6 |
|
| 7 |
-
|
| 8 |
-
|
| 9 |
-
|
| 10 |
-
# Sample product database - replace with your actual database
|
| 11 |
-
product_database = [
|
| 12 |
-
{
|
| 13 |
-
"description": "FIFA 24 EA Sports Football Game",
|
| 14 |
-
"category": "games",
|
| 15 |
-
"features": ["sports", "multiplayer"],
|
| 16 |
-
"price": 4999
|
| 17 |
-
},
|
| 18 |
-
# Add more products
|
| 19 |
-
]
|
| 20 |
-
|
| 21 |
-
def get_recommendations(text: str) -> Dict:
|
| 22 |
-
try:
|
| 23 |
-
# Get recommendations using the multi-model system
|
| 24 |
-
recommendations = recommender.get_recommendations(text, product_database)
|
| 25 |
|
| 26 |
-
|
| 27 |
-
|
| 28 |
-
|
| 29 |
-
|
| 30 |
-
|
| 31 |
-
|
| 32 |
-
"
|
| 33 |
-
"
|
| 34 |
-
"
|
| 35 |
-
|
| 36 |
-
|
| 37 |
-
|
| 38 |
-
|
| 39 |
-
|
| 40 |
-
formatted_recommendations.append(formatted_rec)
|
| 41 |
-
|
| 42 |
-
return {
|
| 43 |
-
"recommendations": formatted_recommendations
|
| 44 |
-
}
|
| 45 |
-
|
| 46 |
-
except Exception as e:
|
| 47 |
-
return {"error": str(e)}
|
| 48 |
-
|
| 49 |
-
# Create Gradio interface
|
| 50 |
-
demo = gr.Interface(
|
| 51 |
-
fn=get_recommendations,
|
| 52 |
-
inputs=gr.Textbox(lines=3),
|
| 53 |
-
outputs=gr.JSON(),
|
| 54 |
-
title="π Smart Gift Recommender",
|
| 55 |
-
description="Get personalized gift suggestions with direct shopping links!"
|
| 56 |
-
)
|
| 57 |
|
| 58 |
-
|
| 59 |
-
|
| 60 |
-
|
| 61 |
-
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 1 |
+
from transformers import AutoModelForSequenceClassification, AutoTokenizer, AutoModelForTokenClassification
|
| 2 |
+
from sentence_transformers import SentenceTransformer
|
| 3 |
+
import torch
|
| 4 |
+
import numpy as np
|
| 5 |
+
from typing import Dict, List, Optional
|
| 6 |
import json
|
|
|
|
|
|
|
| 7 |
|
| 8 |
+
class ProductRecommender:
|
| 9 |
+
def __init__(self):
|
| 10 |
+
self.model_analyzer = MultiModelAnalyzer()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 11 |
|
| 12 |
+
def get_recommendations(self, query: str, product_database: List[Dict]) -> List[Dict]:
|
| 13 |
+
try:
|
| 14 |
+
query_analysis = self.model_analyzer.analyze_text(query)
|
| 15 |
+
|
| 16 |
+
# For testing, return a simple recommendation
|
| 17 |
+
return [{
|
| 18 |
+
"name": "Test Product",
|
| 19 |
+
"price": "βΉ999",
|
| 20 |
+
"category": "test",
|
| 21 |
+
"similarity": 0.95
|
| 22 |
+
}]
|
| 23 |
+
except Exception as e:
|
| 24 |
+
print(f"Error in recommendations: {str(e)}")
|
| 25 |
+
return []
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
| 26 |
|
| 27 |
+
class MultiModelAnalyzer:
|
| 28 |
+
def __init__(self):
|
| 29 |
+
try:
|
| 30 |
+
self.category_model = AutoModelForSequenceClassification.from_pretrained("bert-base-uncased")
|
| 31 |
+
self.category_tokenizer = AutoTokenizer.from_pretrained("bert-base-uncased")
|
| 32 |
+
self.semantic_model = SentenceTransformer('paraphrase-MiniLM-L6-v2')
|
| 33 |
+
except Exception as e:
|
| 34 |
+
print(f"Error initializing models: {str(e)}")
|
| 35 |
+
|
| 36 |
+
def analyze_text(self, text: str) -> Dict:
|
| 37 |
+
return {
|
| 38 |
+
"category": "test",
|
| 39 |
+
"embedding": np.zeros(10),
|
| 40 |
+
"features": ["test"]
|
| 41 |
+
}
|