Spaces:
Sleeping
Sleeping
Update app.py
Browse files
app.py
CHANGED
@@ -1,207 +1,28 @@
|
|
1 |
-
|
2 |
-
|
3 |
-
AutoTokenizer,
|
4 |
-
AutoModelForTokenClassification,
|
5 |
-
TrainingArguments,
|
6 |
-
Trainer
|
7 |
-
)
|
8 |
-
from sentence_transformers import SentenceTransformer
|
9 |
-
from datasets import Dataset
|
10 |
-
import torch
|
11 |
-
import numpy as np
|
12 |
-
from typing import Dict, List, Optional
|
13 |
-
import json
|
14 |
|
15 |
-
|
16 |
-
def __init__(self):
|
17 |
-
# Initialize different models for different tasks
|
18 |
-
|
19 |
-
# 1. Category Understanding Model
|
20 |
-
self.category_model = AutoModelForSequenceClassification.from_pretrained(
|
21 |
-
"EMBEDDIA/sloberta-commerce"
|
22 |
-
)
|
23 |
-
self.category_tokenizer = AutoTokenizer.from_pretrained(
|
24 |
-
"EMBEDDIA/sloberta-commerce"
|
25 |
-
)
|
26 |
-
|
27 |
-
# 2. Semantic Understanding Model
|
28 |
-
self.semantic_model = SentenceTransformer('all-mpnet-base-v2')
|
29 |
-
|
30 |
-
# 3. Feature Extraction Model
|
31 |
-
self.feature_model = AutoModelForTokenClassification.from_pretrained(
|
32 |
-
"bert-base-multilingual-uncased"
|
33 |
-
)
|
34 |
-
self.feature_tokenizer = AutoTokenizer.from_pretrained(
|
35 |
-
"bert-base-multilingual-uncased"
|
36 |
-
)
|
37 |
|
38 |
-
|
39 |
-
|
40 |
-
#
|
41 |
-
category = self._predict_category(text)
|
42 |
-
|
43 |
-
# Get semantic embedding
|
44 |
-
embedding = self._get_semantic_embedding(text)
|
45 |
-
|
46 |
-
# Extract features
|
47 |
-
features = self._extract_features(text)
|
48 |
|
49 |
return {
|
50 |
-
"
|
51 |
-
"
|
52 |
-
"features": features
|
53 |
}
|
54 |
-
|
55 |
-
|
56 |
-
"""Predict product category"""
|
57 |
-
inputs = self.category_tokenizer(
|
58 |
-
text,
|
59 |
-
return_tensors="pt",
|
60 |
-
truncation=True,
|
61 |
-
max_length=512
|
62 |
-
)
|
63 |
-
outputs = self.category_model(**inputs)
|
64 |
-
predictions = torch.nn.functional.softmax(outputs.logits, dim=1)
|
65 |
-
return predictions.argmax().item()
|
66 |
-
|
67 |
-
def _get_semantic_embedding(self, text: str) -> np.ndarray:
|
68 |
-
"""Get semantic embedding of text"""
|
69 |
-
return self.semantic_model.encode(text)
|
70 |
-
|
71 |
-
def _extract_features(self, text: str) -> List[str]:
|
72 |
-
"""Extract relevant features from text"""
|
73 |
-
inputs = self.feature_tokenizer(
|
74 |
-
text,
|
75 |
-
return_tensors="pt",
|
76 |
-
truncation=True,
|
77 |
-
max_length=512
|
78 |
-
)
|
79 |
-
outputs = self.feature_model(**inputs)
|
80 |
-
predictions = outputs.logits.argmax(dim=2)
|
81 |
-
return self._convert_predictions_to_features(predictions, inputs)
|
82 |
|
83 |
-
|
84 |
-
|
85 |
-
|
86 |
-
|
87 |
-
|
88 |
-
|
89 |
-
|
90 |
-
|
91 |
-
for product in product_data:
|
92 |
-
# Format data for training
|
93 |
-
item = {
|
94 |
-
"text": product["description"],
|
95 |
-
"category": product["category"],
|
96 |
-
"features": product["features"],
|
97 |
-
"price": product["price"]
|
98 |
-
}
|
99 |
-
training_data.append(item)
|
100 |
-
|
101 |
-
return Dataset.from_list(training_data)
|
102 |
-
|
103 |
-
def fine_tune_category_model(self, training_data: Dataset):
|
104 |
-
"""Fine-tune the category prediction model"""
|
105 |
-
training_args = TrainingArguments(
|
106 |
-
output_dir="./results",
|
107 |
-
num_train_epochs=3,
|
108 |
-
per_device_train_batch_size=8,
|
109 |
-
per_device_eval_batch_size=8,
|
110 |
-
warmup_steps=500,
|
111 |
-
weight_decay=0.01,
|
112 |
-
logging_dir="./logs",
|
113 |
-
logging_steps=10,
|
114 |
-
)
|
115 |
-
|
116 |
-
trainer = Trainer(
|
117 |
-
model=self.analyzer.category_model,
|
118 |
-
args=training_args,
|
119 |
-
train_dataset=training_data,
|
120 |
-
tokenizer=self.analyzer.category_tokenizer
|
121 |
-
)
|
122 |
-
|
123 |
-
trainer.train()
|
124 |
-
|
125 |
-
def fine_tune_feature_model(self, training_data: Dataset):
|
126 |
-
"""Fine-tune the feature extraction model"""
|
127 |
-
training_args = TrainingArguments(
|
128 |
-
output_dir="./results_feature",
|
129 |
-
num_train_epochs=3,
|
130 |
-
per_device_train_batch_size=8,
|
131 |
-
per_device_eval_batch_size=8,
|
132 |
-
warmup_steps=500,
|
133 |
-
weight_decay=0.01,
|
134 |
-
logging_dir="./logs_feature",
|
135 |
-
logging_steps=10,
|
136 |
-
)
|
137 |
-
|
138 |
-
trainer = Trainer(
|
139 |
-
model=self.analyzer.feature_model,
|
140 |
-
args=training_args,
|
141 |
-
train_dataset=training_data,
|
142 |
-
tokenizer=self.analyzer.feature_tokenizer
|
143 |
-
)
|
144 |
-
|
145 |
-
trainer.train()
|
146 |
|
147 |
-
|
148 |
-
|
149 |
-
|
150 |
-
|
151 |
-
|
152 |
-
def train_on_product_data(self, product_data: List[Dict]):
|
153 |
-
"""Train models on product data"""
|
154 |
-
# Prepare training data
|
155 |
-
training_dataset = self.trainer.prepare_training_data(product_data)
|
156 |
-
|
157 |
-
# Fine-tune models
|
158 |
-
self.trainer.fine_tune_category_model(training_dataset)
|
159 |
-
self.trainer.fine_tune_feature_model(training_dataset)
|
160 |
-
|
161 |
-
def get_recommendations(self, query: str, product_database: List[Dict]) -> List[Dict]:
|
162 |
-
"""Get product recommendations"""
|
163 |
-
# Analyze query
|
164 |
-
query_analysis = self.model_analyzer.analyze_text(query)
|
165 |
-
|
166 |
-
# Find matching products
|
167 |
-
matches = []
|
168 |
-
for product in product_database:
|
169 |
-
product_analysis = self.model_analyzer.analyze_text(product['description'])
|
170 |
-
|
171 |
-
# Calculate similarity score
|
172 |
-
similarity = self._calculate_similarity(
|
173 |
-
query_analysis,
|
174 |
-
product_analysis
|
175 |
-
)
|
176 |
-
|
177 |
-
matches.append({
|
178 |
-
"product": product,
|
179 |
-
"similarity": similarity
|
180 |
-
})
|
181 |
-
|
182 |
-
# Sort by similarity
|
183 |
-
matches.sort(key=lambda x: x['similarity'], reverse=True)
|
184 |
-
|
185 |
-
# Return top 5 matches
|
186 |
-
return [match['product'] for match in matches[:5]]
|
187 |
-
|
188 |
-
def _calculate_similarity(self, query_analysis: Dict, product_analysis: Dict) -> float:
|
189 |
-
"""Calculate similarity between query and product"""
|
190 |
-
# Combine multiple similarity factors
|
191 |
-
category_match = query_analysis['category'] == product_analysis['category']
|
192 |
-
embedding_similarity = np.dot(
|
193 |
-
query_analysis['embedding'],
|
194 |
-
product_analysis['embedding']
|
195 |
-
)
|
196 |
-
feature_overlap = len(
|
197 |
-
set(query_analysis['features']) & set(product_analysis['features'])
|
198 |
-
)
|
199 |
-
|
200 |
-
# Weight and combine scores
|
201 |
-
total_score = (
|
202 |
-
0.4 * category_match +
|
203 |
-
0.4 * embedding_similarity +
|
204 |
-
0.2 * feature_overlap
|
205 |
-
)
|
206 |
-
|
207 |
-
return total_score
|
|
|
1 |
+
import gradio as gr
|
2 |
+
from product_recommender import ProductRecommender
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
3 |
|
4 |
+
recommender = ProductRecommender()
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
5 |
|
6 |
+
def get_gift_recommendations(text: str) -> dict:
|
7 |
+
try:
|
8 |
+
recommendations = recommender.get_recommendations(text, []) # Empty list as placeholder
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
9 |
|
10 |
return {
|
11 |
+
"recommendations": recommendations,
|
12 |
+
"status": "success"
|
|
|
13 |
}
|
14 |
+
except Exception as e:
|
15 |
+
return {"error": str(e)}
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
16 |
|
17 |
+
demo = gr.Interface(
|
18 |
+
fn=get_gift_recommendations,
|
19 |
+
inputs=gr.Textbox(lines=3),
|
20 |
+
outputs=gr.JSON(),
|
21 |
+
title="π Smart Gift Recommender",
|
22 |
+
description="Get personalized gift suggestions!"
|
23 |
+
)
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
24 |
|
25 |
+
if __name__ == "__main__":
|
26 |
+
demo.launch(server_name="0.0.0.0", server_port=7860)
|
27 |
+
else:
|
28 |
+
app = demo.app
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|
|