Spaces:
Running
Running
Update app.py
Browse files
app.py
CHANGED
@@ -7,7 +7,7 @@ import requests
|
|
7 |
try:
|
8 |
import flash_attn
|
9 |
except ImportError:
|
10 |
-
raise RuntimeError("Missing required dependency: flash_attn. Install with `pip install flash-attn`")
|
11 |
|
12 |
# Load DeepSeek-R1 model with trust_remote_code enabled
|
13 |
model_name = "deepseek-ai/DeepSeek-R1"
|
@@ -26,7 +26,6 @@ model = AutoModelForCausalLM.from_pretrained(
|
|
26 |
# Use a text-generation pipeline
|
27 |
generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1)
|
28 |
|
29 |
-
|
30 |
# π― Function to extract interests from user input
|
31 |
def extract_interests(text):
|
32 |
prompt = f"Extract 3-5 relevant interests from this request: '{text}'. Focus on hobbies and product preferences."
|
@@ -37,7 +36,6 @@ def extract_interests(text):
|
|
37 |
|
38 |
return interests.split(", ") # Convert to a list of keywords
|
39 |
|
40 |
-
|
41 |
# π Web search for gift suggestions
|
42 |
def search_gifts(interests):
|
43 |
query = "+".join(interests)
|
@@ -53,7 +51,6 @@ def search_gifts(interests):
|
|
53 |
"IndiaMart": indiamart_url
|
54 |
}
|
55 |
|
56 |
-
|
57 |
# π― Main function for gift recommendation
|
58 |
def recommend_gifts(text):
|
59 |
if not text:
|
@@ -67,7 +64,6 @@ def recommend_gifts(text):
|
|
67 |
"Gift Suggestions": links
|
68 |
}
|
69 |
|
70 |
-
|
71 |
# π¨ Gradio UI for easy interaction
|
72 |
demo = gr.Interface(
|
73 |
fn=recommend_gifts,
|
|
|
7 |
try:
|
8 |
import flash_attn
|
9 |
except ImportError:
|
10 |
+
raise RuntimeError("Missing required dependency: flash_attn. Install with `pip install flash-attn --no-build-isolation`")
|
11 |
|
12 |
# Load DeepSeek-R1 model with trust_remote_code enabled
|
13 |
model_name = "deepseek-ai/DeepSeek-R1"
|
|
|
26 |
# Use a text-generation pipeline
|
27 |
generator = pipeline("text-generation", model=model, tokenizer=tokenizer, device=0 if torch.cuda.is_available() else -1)
|
28 |
|
|
|
29 |
# π― Function to extract interests from user input
|
30 |
def extract_interests(text):
|
31 |
prompt = f"Extract 3-5 relevant interests from this request: '{text}'. Focus on hobbies and product preferences."
|
|
|
36 |
|
37 |
return interests.split(", ") # Convert to a list of keywords
|
38 |
|
|
|
39 |
# π Web search for gift suggestions
|
40 |
def search_gifts(interests):
|
41 |
query = "+".join(interests)
|
|
|
51 |
"IndiaMart": indiamart_url
|
52 |
}
|
53 |
|
|
|
54 |
# π― Main function for gift recommendation
|
55 |
def recommend_gifts(text):
|
56 |
if not text:
|
|
|
64 |
"Gift Suggestions": links
|
65 |
}
|
66 |
|
|
|
67 |
# π¨ Gradio UI for easy interaction
|
68 |
demo = gr.Interface(
|
69 |
fn=recommend_gifts,
|